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Abstract 

Blind Spots are regions around vehicle that cannot be viewed by a driver while using rear view 

and side mirrors. They are a major contributing factor to road traffic incidents around the world. 

Changing lanes or negotiating a turn in a congested area while having no information about the 

objects in the blind spot area can be dangerous. It is particularly hard for drivers of the largest 

vehicles to see everything around them but the consequences of missing an obstruction could be 

catastrophic. 

As public transport operators operate on increasingly crowded roads, drivers need to help in 

eliminating blind spots and highlight potential collisions before they occur. The Kayoola Buses, 

developed by KMC potentially falls in this category. It is important that such locally developed 

transport solutions integrate navigation aids for object recognition in blind spots so as to reduce 

the likelihoods of RTIs 

This project is focused on the Design and Implementation of a Blind Spot Detection and 

Monitoring System for Kayoola buses. The system is characterized by a hardware sub-system that 

measures gathers information such as motion of a vehicle, range of object in blind spot area to 

vehicle as well as video feed of the object. All this information is processed within the software 

sub-system so as to provide a driver with information of the object in the blind spot region.   
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1. Introduction 

1.1 Background 

Uganda has one of the highest rates of Road Traffic Incidents (RTIs) globally. Over the last decade, 

the road crash fatalities recorded rose from 2,597 to 3,503 representing a growth of 25.9%. The 

accident severity index is 24 people killed per 100 road crashes [1]. On average, Uganda loses 10 

people per day in road traffic crashes, which is the highest level in East Africa [2]. The overall 

annual cost incurred due to road crashes is currently estimated at approximately UGX 4.4 trillion 

($1.2 billion), representing 5% of Uganda’s gross domestic product (GDP) [3]. 

In an attempt to curb the rampant RTIs, the Government of Uganda developed a comprehensive 

road safety road map as one of the ways to achieve a 50% reduction in road traffic accident deaths 

by 2020, as recommended by the UN resolution on Decade of Action for Road Safety (2011-2020) 

[3]. It focused on road safety management through establishing infrastructure for the protection of 

vulnerable road users in urban areas, driver training and testing, enforcement of traffic rules, a road 

crash database, post-crash care response and coordination system.  

Although these solutions were very good, they have a great limitation: Human error. A police 

report in the first week of July 2017 stated that out of all the 3000 plus deaths that occurred in 2016 

due to accidents, over 80% of them were caused by human error [1]. 

Blind spots are one of the most common sources of “Human Error.” In the United States, over 

800,000 blind spot accidents occur each year with approximately 300 fatalities [4]. In Europe, 

blind spots are among the main contributing factors to road accidents in that European Union Law 

requires lorries to be fitted with blind spot mirrors to give drivers a wider field of vision [5]. In 

Uganda, most of the RTIs are caused by reckless and careless driving that is rooted in a lack of 

focus and general unawareness of other road users.  

To minimize the causative effect of blind spots on RTIs and fatalities, automotive industries have 

implemented blind spot detection systems. Typical systems employ various sensors and computer 

vision methods for obstacle detection and driver alerts. An example is a vision-based blind-spot 

warning system that provides a driver assistance interface for visualizing the cars around them on 

a 3D platform, powered by neural networks for car detection and depth estimation [6].  This system 

can only detect cars and possesses a high processing load due to the 3-D visual involved [6].  

Another instance is Bosc-Mobility Solutions which offers a sensor-based blind-spot detection 

system with two ultrasonic sensors on each side of the vehicle that monitor the space in the adjacent 

lane, allowing the system to cover the blind spots. If another vehicle is situated in the monitored 

area, the driver is alerted to the potential danger through a warning sign in the side mirror. If the 

driver fails to see or ignores the warning and later activates the turn signal to change lanes, the 

system can also trigger an audible warning. The system recognizes stationary objects on or 

alongside the road, such as guardrails or parked vehicles. This system however does not provide 
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visual views of the precise location of the objects in the blind spot, but rather provides feedback 

through the blinking of the LED and auditory feedback [7]. 

Traffic accidents on roads and highways represent one of the most serious problems worldwide 

leading to loss of lives and damage of property. Long vehicles like the Kayoola buses that have a 

length of 12.19m have multiple blind spots and yet have no Blind Spot Detection System, while 

other road users are typically unaware of the extent of these blind spots leading to many accidents 

occurring when cyclists or pedestrians disappear from the driver’s view. 

1.2 Problem Statement 

Available solutions (blind spot detection systems) have varying features such as GUI display, LED 

alerts, adaptive alert level based on driver reluctance, and auditory feedback, which are equally 

important and yet these are only provided for luxury vehicles at extremely expensive rates 

(typically between 10 - 20 million Uganda Shillings). There is therefore a need for a locally 

developed, low-cost and customized blind spot detection system for the Kayoola buses.  

 

1.3 Objectives 

1.3.1 Main objective 

To develop a system that detects objects in blind spot areas of the Kayoola Buses and alerts the 

driver of their proximity. 

1.3.2. Specific objectives 

1. To develop the hardware and software requirements specifications for the Blind Spot Detection 

and Monitoring System. 

2. To develop logical and physical design models for the System. 

3. To implement the design specification into a functional prototype. 

4. To implement an object recognition algorithm onto the Raspberry Pi. 

 

1.4 Justification 

As public transport operators operate on increasingly crowded roads in Uganda, it is hard for 

drivers of long vehicles to view everything around the vehicle, yet the consequences of missing an 

obstruction could be catastrophic. The Kayoola Bus, developed by KMC potentially falls in this 

category. It is important that such locally developed transport solutions integrate navigation aids 

for object recognition in blind spots so as to reduce the likelihoods of RTIs.  

 

1.5 Scope 
This project targeted the Kayoola buses, therefore our prototyping, deployment in future, and data 

collection already done or those that will be collected in due course will be in association with the 
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Kayoola buses. And more specifically, since new versions of the Kayoola buses are arising we will 

first restrict our study to the Kayoola EVS (The Electric bus). 

1.5.1 Object detection model 

The object detection being simply a feature of the system, the focus of the project will be in 

identifying an object detection model and fine tuning it other than developing one from scratch. 

This model was limited to the identification of cars, motorcycles, bicycles and people. Objects 

other than those listed above were labelled and unknown by our deep learning model. 

1.5.2 Test scope 

This project employed systematic testing paradigm which involve unit testing, integration testing 

and system testing. In-vehicle or road testing was not conducted.  



4 | P a g e  
 

2 Literature Review 

2.1 Introduction 

This chapter contains an overview of vehicle safety features including different blind spot 

detection systems. This chapter also provides information on concepts like deep learning, 

sensor technologies, Graphical User Interfaces (GUIs) as well as microcontrollers. 

 

Vehicle safety features have evolved a great bunch the years. Features like crumple zones, seat 

belts and airbags all provide protection if a crash occurs, however active safety assist technologies 

which can prevent a crash from occurring are now a significant point of differentiation. These 

include Blind Spot Monitoring (BSM), Autonomous Emergency Braking (AEB), active Lane 

Keep Assist (LKA) and Intelligent Speed Adaptation (ISA) [8]. 

 

2.1.1 Adaptive Cruise Control 

Adaptive Cruise Control uses the car's radar and camera modules to change the set cruising 

speed if it detects a slower vehicle ahead. When adaptive cruise control is engaged, the car will 

maintain a specific distance from the car in front[1]. 

2.1.2 Active Park Assist 

Using sonar and radar, vehicles equipped with Active Park Assist will look out for and measure 

empty parking spots and then actively steer the vehicle into them while the driver works the 

accelerator and brake.  

2.1.3 Automated Emergency Braking 

Using forward-facing cameras and radar, vehicles with Automated Emergency Braking will 

warn the driver of an imminent forward collision with another vehicle, pedestrian, or any other 

object and then brake (stop) the vehicle on behalf of the driver if they do not take any action. 

2.1.4 Blind-Spot Monitor 

Using sonar sensors attached to the rear bumpers or sometimes cameras fixed in the exterior 

mirrors, blind-spot monitoring systems watch adjacent lanes and alert the driver to other 

vehicles that might be in the driver's blind spot or hidden by the vehicle’s profile (roof pillars). 

Most cars with this feature have warning lights in the exterior mirrors that flash or blink when 

a vehicle is detected close by and one lane over[1]. 

2.1.5 Parking Sensors 

Parking sensors; also called proximity sensors aid the driver during parking maneuvers by 

using ultrasonic transducers to locate obstacles such as parked cars, or curbs and alert the driver 

with a series of beeps that increase in intensity as the vehicle nears the object. Sensors are 

usually located on the front and rear bumpers[1]. 

https://www.caranddriver.com/news/a15368980/ford-debuts-fully-self-parking-car-collision-avoidance-tech-with-automated-steering/
https://www.caranddriver.com/features/a15124412/driving-in-the-dark-feature/
https://www.caranddriver.com/features/a25736661/netflix-birdbox-test-driving-blind/
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2.2 Blind Spot Detection Systems 

Many car manufacturers and private companies such as Bosch, Renault, Volvo, Toyota, and 

Ford have developed Blind Spot Detection System (BSDS) using different methods and 

techniques from each other but still harboring the same approach which is to detect object 

presence in blind spot areas and alert the driver. 

The Bosch blind spot detection system observes the surroundings of the vehicle when changing 

lanes and warns drivers of dangers. Two ultrasonic sensors are situated on each side of the 

vehicle and monitor the space in the adjacent lane, allowing the system to cover the dangerous 

blind spots. If another vehicle is situated in the monitored area, the driver is alerted to the 

potential danger by means of a warning sign located in the side mirror. If the driver fails to 

spot or ignores this warning and activates the turn signal to change lanes, the system is also 

able to trigger an audible warning. 

The Renault Koleos Blind Spot Warning System alerts the driver about other vehicles in the 

detection zone. The system is activated when the vehicle is in motion with its speed between 

approximately 30 km/h (19 mph) and 140 km/h (87 mph). This function uses sensors installed 

in the front and rear bumper of both sides. 

Table 1: Renault Koleos Blind Spot Warning System 

    
 

The Volvo BLIS (Blind Spot Information System) is a function designed by Volvo for 

providing support for the driver when driving in dense traffic on roads with several lanes in 

the same direction. It is activated when the engine is started. This is confirmed by the 

indicator lamps located in the door panels blinking once. The BLIS function can also be 

deactivated/activated by pressing the BLIS button on the center console. 
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Table 2: Volvo Blind Spot Information System 

 

 

 
 

Studies on Blind Spot Detection Systems have been focused on two kinds of Blind Spot Detection 

Systems that is; Vision-based and Non-vision based. Vision based systems use camera sensors 

with computer vision as well as deep learning techniques while Non-vision based systems use 

radar, infra-red, Bluetooth, and ultrasound as sensors for blind spot detection.  

2.2.1 Vision-based solution 

Yiming Zhao, Lin Bai, Lecheng Lyu, and Kinming Huang presented a design of neural network 

with only a few layers for real-time embedded systems of which one of the applications was blind 

spot detection. Usually, better accuracy requires deeper models and better computational costs. 

However, according to them by using depth wise separable convolution, they were able to 

dramatically reduce the model parameters and operations. The key focus of their research was the 

transfer of blind spot detection into an image classification task. Like any engineering task, a gain 

in a parameter leads to compromise in another, in this case the tradeoff was between accuracy and 

cost. The limitation to this research was that only a few road and weather conditions were 

considered which is practically not sufficient for such systems to be deployed in the real World 

[2]. 

Huei-Yung, Jyun-Min,  Lu-Ting, and Li-Qui proposed a vision-based driver assistance system for 

highway, urban, and city environments. Their system consisted of three subsystems which are lane 

change detection, forward collision warning, and overtaking vehicle identification. During the 

implementation, they used two monocular car digital video recorders to capture the front and rear 

views of the traffic scenes [3]. The front vehicles were identified by a new CDF-based symmetry 

detection technique. For overtaking detection, the motion cue obtained from optical flow was 

combined with convolutional neural networks for vehicle identification with repetitive patterns 

removal. Their experiments and evaluation carried out on various real traffic scenarios 

demonstrated the effectiveness of the proposed techniques [3]. However, on the downside, they 

did not adopt stereo vision for the cameras making depth estimation for the front vehicles more 

difficult.  

D. Kwon, R. Malaiya, G. Yoon, J. Ryu, and S. Pi, developed a camera-based vehicle blind spot 

detection system through the FCN (Fully Connected Networks) model. Their main research goal 

was the development of a very safe and lightweight camera-based blind spot detection system for 

the application in future autonomous vehicles [4]. The established research framework had five 

stages: data preprocessing, feature extraction, FCN model learning, vehicle blind spot setting, and 

false positive reduction. Overall, 99.45% training accuracy and 98.99% testing accuracy of the 

FCN model were achieved, respectively. After deploying the software on the embedded board for 
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actual testing on a real road, they confirmed 93.75% average blind spot detection accuracy with 

three false positives [4].  

2.2.2 Non-vision based solution 

N. De Raeve, M. De Schepper, J. Verhaevert, and P. Van Torre, proposed a blind spot detection 

and warning system in which the system warns both the driver and the vulnerable road user. Unlike 

most non-vision-based systems, their solution was based on BLE (Bluetooth Low Energy) wireless 

communication and relying on RSSI (Received Signal Strength Indicator) measurements. The 

system consisted of five detection nodes around the truck which advertise their presence [5]. The 

vulnerable road user has a wearable device that scans these advertisement packets. The algorithm 

inside the wearable interprets these messages and applies filtering on their RSSI levels [5]. During 

a real-life measurement, their system performed reliably well. The first alert for a vulnerable road 

user starting from the back of the truck was received at ±8 m distance. The test with multiple 

vulnerable road users at the same time led to the same results [5]. When the wearable was 

surrounded by many people, the system alert came at a little later time. In a group of people, only 

a few needed to wear the wearable in order to receive an alert, the complete group will be alerted 

due to the light and sound effect of the others [5]. The outstanding feature of this system is the fact 

that, both parties (the driver and vulnerable road user) are warned. However, the overall system 

context seems complex as it requires design of two standalone sub-system, one for the car and the 

other is a wearable. Besides, developing the two subsystems may not be the main issue but making 

sure every other road user wears is another issue requiring attention. 

Liu, Wang, and Zou [6], proposed a blindspot information system. This system detects and warns 

in both daytime and nighttime conditions. Their research focused on generally five (5) concepts, 

and these were; - system architecture, radar system structure and algorithms, IF (Intermediate 

Frequency) signal processor, motive target detector and blindspot calibration method, and system 

control strategy. They used the Line Frequency Modulated Continuous Wave (LFMCW) radar 

system to monitor the moving targets which are in the blindspot areas [6]. The transmitted signal 

from this millimeter radar system was defined in the form, 

𝑇(𝑡) = 𝜃 cos [2𝜋 (𝑓 +
𝐵𝑡

2𝑇
) 𝑡] 

Where, f is the operation frequency of the FMCW radar, B is the bandwidth of modulation 

frequency, T is the time of modulation frequency [6]. 

Using the Doppler shift in the range of the transmitted signal, the target can be identified as 

stationary or moving, and if moving they were also able to deduce its range from the ego vehicle 

as well as its relative velocity. They then based their choice on the clutter distribution model to 

select the “cell greatest, smallest and averaging constant false-alarm rate” (CGSA-CFAR) 

detection algorithm [6]. The IF signals captured from the front-end of the radar follows Rayleigh 

distribution, they are first filtered by digital filter banks that can suppress noise effectively. The 

filtered signal is then fed to the detector. When the researchers experimented with this detector 

alongside several others, they found out that it outperforms them with a detection rate up to 97.78% 

and false detection rate is lower at 2.63% [6]. For the system control, the coordinates of the radar 

were mapped into the 2D coordinate of the vehicle. Based on the calibrated blind spot area 

coordinate system, the developed system determines if the target is in the blind spot area or not. 

The system was implemented on TI DSP-embedded platform and installed on Chery Arrizo7. Then 
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tests were conducted in real urban environments and considering both daytime and nighttime 

conditions. Their tests showed that, for daytime and nighttime the achieved early warning rates 

were 98.38% and 98.34% respectively as compared to any system build using computer vision [6]. 

On the downside, radar-based systems can achieve high accuracy, but rather than being expensive 

they can also interfere with other wireless systems using the same frequency band. 

2.2.3 Hybrid solution 

J. Katarzyna, K. Maciej, and S. Wojciech, proposed safety support systems which were designed 

for the needs of the race Shell Eco-marathon. Shell Eco-marathon is the world's largest race for 

energy efficient vehicles [7]. Among the concepts of safety support systems, they presented three 

prosed solutions for blind spot detection and selected only one of those as explained below; 

i. The first concept involved the use of 9 photoelectric sensors with a range of 5m [7]. This 

solution offered merits of small dimensions and low price, but had issues due to sunlight 

interference, and low accuracy. 

ii. The second concept involved the use of Microsoft KINECT 4 devices [7]. With the built 

infrared scanner, it was possible to obtain high-resolution scanning. However, dimensions 

of the device may disrupt the aerodynamics of the vehicle and direct sunlight can disrupt 

the infrared scanner. In addition, devices were characterized by Kinect dead center to the 

distance of 0.4 m from the device. 

iii. The third concept was to use the Hokuyo laser scanner with a first class safety [7]. In this 

concept, one laser scanner was to be used to get the desired effect. The device is 

characterized by a wide angle and a high frequency operation of the scan. Besides the high 

equipment cost, its compact design and high frequency scanning makes it the optimum 

choice for blind spot detection. 

When they simulated the performance of their system, it was possible to alert the driver only when 

there was need [7]. The final data presentation to the driver was done in two ways but based on 

driver’s preference, these methods include; showing the angle of the approaching vehicle and its 

corresponding distance to the driver or toggling between three LEDs (left, center, and right) to 

show the driver that their attention is required. The main downside of this solution was its cost 

being very high. 

As part of the DESERVE (Development platform for Sales and Efficient Drive) project funded by 

the European Commission under ECSEL joint undertaking program,  Pyykonen, Virtanen, and 

Kyytinen developed an intelligent blind spot detection system for long vehicles carrying heavy 

goods [8]. Even though their choice of the methodology was biased by the fact that, sensor 

installations are limited by the regulation which says protrusions of over 50mm from the vehicle 

are not allowed, the researchers had up to three sets of options under study to identify the optimal 

solution of best performance, cost and reliability [8]. The first set consists of three Vislab 3D-E 

cameras, one on the front and then on both sides of the vehicle. All cameras were installed near 

the top of the vehicle with them facing downwards, thus, any object is elevated from the ground 

level and detection is straight forward [8]. The second set had a single Vislab 3DV-E stereo camera 

at the front, and additional three Continental SRR 20X radars installed under the cargo bed. One 

radar at the right side, one at the left and the third on the rear. Finally, the third sensor sets had one 

Vislab 3DV-E camera and several ultrasonic range finders installed under the cargo bed [8]. Their 

design did not give the driver the camera feeds, but audio and visual feedback as follows. When 

an obstacle comes in range, say on the right, an audible warning is given on the right side of the 
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vehicle which is also heard by the vulnerable user, on the other hand, the right side of the visual 

display is also stressed to let the driver know the location of the candidate object. After carrying 

out several tests, they were able to find out that, stereo cameras can be used to identify small 

objects. The main downside of this research is that, they failed to propose the best sensor 

combination from the three sets defined, and also some of their tests were only done in simulation 

software and hence did not consider real World experience. 

 

2.3 Sensor Technologies 
 

The vehicles today have been integrated with a wide range of sensors providing critical data for 

performance, safety, convenience and comfort functionality. With the significant improvement in 

sensor, communication and information technology and the reliable application of obstacle 

detection techniques and algorithms, automated driving fast tracking to becoming a pivotal 

technology that will revolutionize the future of transportation and mobility. Sensors play a key role 

to the perception of vehicle surroundings in the automated driving systems, and the use and 

performance of the different integrated sensors can directly determine the safety and feasibility of 

automated driving vehicles [9]. 

 

Figure 1: Illustration of the Different sensors in a vehicle 

Most of the automotive manufacturers today commonly use three types of sensors in autonomous 

vehicles: cameras, ultrasonic sensors, radars, and lidars.  

2.3.1 Ultrasonic sensors 

Ultrasonic sensors are usually mounted onto the vehicle bumpers for Assisted Parking Systems. 

So far, these sensors are only expected to function when the vehicle is in motion at a speed of less 

than 10 km/hour therefore, they are not able to measure small distances with 100% accuracy. In 

autonomous cars, however, these sensors could potentially be used along with radar, cameras and 

other sensor technologies to provide the distance measuring functionality [10]. 

2.3.1 Camera sensors 

Autonomous cars usually have video cameras and sensors so as to observe and interpret the objects 

in the road the same way human drivers do with their eyes. By equipping these vehicles with 
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cameras at every angle, the vehicles are capable of maintaining a 360° view of their external 

environment, therefore providing a broader picture of the traffic conditions and objects around 

them. 

 

Cameras are relatively inexpensive and with their appropriate software, can detect both obstacles 

in motion or static obstacles within their field of view and provide high-resolution images of the 

external surroundings. Today, 3D cameras are available and being used for displaying highly 

detailed and realistic images. These cameras automatically detect objects, classify them, and 

determine the distances between them and the vehicle. For example, the cameras can easily identify 

other cars, pedestrians, cyclists, traffic signs and signals, road markings, and curb [11]. 

 

2.3.3 Radar sensors 

Radar (Radio Detection and Ranging) sensors perform a crucial role to the overall function of 

autonomous driving as they send out radio waves that detect objects and gauge their distance and 

speed relative to the vehicle in real time. 

 

Both short and long-range radar sensors can be deployed all around the car and each one has 

different functions. While short range (typically 24 GHz) radar applications enable blind spot 

monitoring, the ideal lane-keeping assistance, and parking aids, the roles of the long range 

(typically 77 GHz) radar sensors include automatic distance control and brake assistance [11]. 

 

2.3.4 Lidar sensors 
 

Lidar (Light Detection and Ranging) sensors work in a way similar to radar systems, differing only 

with the use of lasers instead of radio waves. LiDAR is a remote sensing technology that works 

on the principle of emitting pulses of infrared beams (laser light) which reflects off target objects. 

These reflections are then detected by the instrument and the time taken between emission and 

receiving of the light pulse enables the estimation of distance between the object and the vehicle. 

As the LiDAR scans the external surroundings of the vehicle, it generates a 3D representation of 

the scene in the form of a point cloud [10]. 

2.4 Graphical User Interface  
 

A graphical user interface (GUI) is a type of user interface where users interact with electronic 

devices through visual indicator representations. There are different visual programming 

languages each with its unique advantages for the development of a graphical user interface design 

over the other. Examples include python, C# or Java. 

2.5 Deep Learning  
 

Deep learning is a machine learning technique that teaches computers to accomplish what comes 

naturally to humans that is; learn by example. Deep learning is a key technology behind 
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autonomous vehicles; enabling them to recognize a stop sign, or to distinguish a pedestrian from 

a poster sign along roads. [12]. 

In deep learning, a computer model learns to perform classification tasks directly from images, 

text, or sound provided by the programmer. Deep learning models can achieve high levels of 

accuracy, and sometimes even exceeding human-level performance. Models are trained by using 

a very large set of labeled data and neural network architectures that contain multiple layers [12]. 

Most deep learning methods use neural network architectures, hence the reason why deep 

learning models are usually referred to as deep neural networks. “Deep” in this instance usually 

refers to the number of hidden layers within the neural network. Traditional neural networks 

normally contain only 2-3 hidden layers, while deep networks could have as many as 150 [12]. 

Deep learning models are trained using large sets of labeled data and neural network architectures 

that learn features directly from the data in the dataset without the need for manual feature 

extraction [12]. 

 

Figure 2: Neural Networks organized in layers consisting of interconnected nodes 

2.5.1 Computer Vision  
 

Computer vision is a set of techniques used for extracting information from images, videos, or 

point clouds provided by the programmer. Computer vision includes image recognition, activity 

recognition, motion estimation, video tracking, and object detection. Examples of real-world 

applications include; face recognition as a security feature for logging  into smartphones, 

pedestrian and vehicle avoidance in autonomous vehicles, and tumor detection in medical sector 

using MRIs. Software tools such as MATLAB® and Simulink® are usually used to develop these 

computer vision techniques [13]. 

https://www.mathworks.com/discovery/neural-network.html
https://www.mathworks.com/videos/getting-started-with-neural-networks-using-matlab-1591081815576.html
https://www.mathworks.com/discovery/medical-image-analysis.html
https://www.mathworks.com/discovery/medical-image-analysis.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
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Deep learning approaches to computer vision are useful during object detection, object 

recognition, image deblurring as well as scene segmentation. Deep learning approaches used for 

computer vision involve training Convoluted Neural Networks (CNNs), which learn directly from 

labeled data using patterns at different scales. CNN training requires a large set of labeled training 

images, videos or point clouds. Transfer learning uses pre-trained networks can accelerate this 

process with less training data [13]. 

2.5.2 Object Detection 

 

Object detection is a computer vision technique for identifying instances of objects in images or 

videos. Object detection algorithms typically leverage machine learning or deep learning to 

produce meaningful results [14]. 

Object detection is plays a crucial role in development of Advanced Driver Assistance Systems 

(ADAS) that enable cars to detect driving lanes and also perform pedestrian detection to improve 

on road safety. There are two key approaches to object detection using deep learning: 

 Create and train a custom object detector. When training a custom object detector from scratch, 

one needs to design a network architecture for the computer to learn the features for the objects of 

interest (in the images or videos). One may also need to compile a very large set of labeled data in 

order to train the CNN. The results from a custom object detector can be impressive however the 

programmer needs to manually set up the layers and weights in the CNN, which requires a lot of 

time and training data [14]. 

 Use a pre-trained object detector. The majority object detection workflows using deep learning 

leverage transfer learning. This approach enables one to start with a pre-trained network and then 

fine-tune it for your application they are working on. This method can provide faster results 

because the object detectors have already been trained on thousands, or even millions, of images 

as well as videos[14]. 

 

2.6 Microcontrollers 
A microcontroller is a small and low-cost microcomputer, that is designed to perform the specific 

roles of embedded systems for example displaying a microwave’s information, receiving remote 

signals, and so on. Basically, a microcontroller gathers inputs, processes this information, and 

outputs a certain action based on the information gathered.  

A microcontroller can be viewed as a small computer because of the essential components 

inside of it that is; the Central Processing Unit (CPU), the Flash Memory, the Serial Bus 

Interface, the Input/Output Ports (I/O Ports), the Random-Access Memory (RAM), and in 

many cases, the Electrical Erasable Programmable Read-Only Memory (EEPROM).  

 

 

 

https://www.mathworks.com/solutions/deep-learning/deep-learning-computer-vision.html
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.mathworks.com/help/vision/image-and-video-ground-truth-labeling.html
https://www.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://blogs.mathworks.com/pick/2017/02/24/deep-learning-transfer-learning-in-10-lines-of-matlab-code/
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3 Methodology 

3.1 Introduction 

This chapter details the steps taken to design and implement the blind spot detection and 

monitoring system. The Systems Engineering Methodology was followed; where systems 

requirements for the software and hardware subsystems were developed, system modelling and 

architecture, design models were developed, the system was developed and implemented into a 

prototype that was tested in conformance to the system requirements as illustrated in the table 

below. 

Table 3: Intervention Logic 

SN Milestone Key Questions 
Instruments, Tools, Methods & 

Data Sources 

1.  

Requirements 

Specification 

 

(1) Who are th users of the system? 

(2) What are the system features? 

(3) What are the external interface 

requirements? 

(4) What are the functional requirements of 

the system? 

(5) What are the non-functional 

requirements of the system? 

Data Sources: Papers, Books 

Methods: Desk Research, 

Benchmarking, Interviews, 

Surveys 

Tools and Instruments: Internet 

Output: SRS (System 

Requirement Specification) 

2.  

System 

Architecture and 

System 

Modelling 

(1) What are the components of the 

system? 

(2) How will the components of the 

system interact? 

(3) What are the boundaries of the system? 

(4) What other systems will the system 

interact with? 

(5) What are the views, models, behavior, 

and structure of the system? 

 

Data Sources: Internet, Books, 

Methods: Desk Research, 

Drawing/ Modelling 

Tools: Star UML 

Output: SAD (System 

Architecture Description) 
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3.  
Design 

Specification 

(1) What user interfaces does the system 

have? 

(2) In what environment will the system be 

used? 

(3) What are the inputs and the outputs of 

the system? 

(4) How are the inputs processed? 

(5) How much power is needed for the 

different components of the system to 

operate? 

Data Sources: Internet, SRS 

Methods: Conceptual Data 

Modelling 

Tools: Adobe XD, Fritzing 

software 

Output: SDD (System Design 

Document) 

4.  Implementation 

1) What are the competences of the team 

members? 

2) What hardware will be used? 

3) What software will be used for 

development? 

4) What development methodologies will 

be employed to come up with the 

various components of the system? 

5) What Programming Language(s) will be 

used to develop the system? 

 

 

Data Sources: Internet, SRS, 

SDD, Books 

Methods: A mix of Prototyping 

Tools:  Equipment Datasheets, 

Micro Controller Units, Sensors, 

Actuators 

Output: Prototype 

5.  
Test 

Specification 

(1) What is the scope of the testing? 

(Components that will be tested) 

(2) What type of testing will be performed? 

(3) What are the objectives of testing the 

system? 

(4) What is the test environment? 

Data Sources: Internet, SRS, 

SDD 

Methods: Unit Testing, 

Integration Testing, System 

Testing 

Tools: Configuration 

management tools 

 

3.2 System Requirements Analysis 

Requirements Analysis is the process of defining the expectations of the users for a system that is 

to be built. It involves the tasks that are conducted to identify the needs of the stakeholders. The 

requirements of the BSDS were categorized into two based on the sub-system; the software and 

hardware sub-system. These were presented in the classes of Functional Requirements (REQF) 

and Non-functional Requirements (REQNF). 

Table 4: System Requirements 

SN Sub-System ID Requirements Description 
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1.  Software 

 Functional Requirements 

REQF001 
Shall provide visual display of the location and distance of the objects 

in the blind spots of the bus in real-time. 

REQF002 
Shall be capable of reading raw sensor values from the accelerometer, 

ultrasonic sensors and camera. 

REQF003 Shall process raw sensor values into formats suitable for decision 

making as well as formats that can be interpreted by the user. 

REQF004 Shall initiate the blinking of LEDs when an object in the blind spot 

surpasses the defined threshold distance value [1m]. 

REQF005 Shall initiate auditory feedback when the distance between the bus and 

object gets smaller than the threshold [1m]. 

REQF006 Shall start on system start-up. 

REQF007 Shall be activated when motion of the bus has been detected. 

REQF008 Shall seamlessly interact with the hardware sub-systems which 

include; - the Raspberry Pi and the peripheral devices. 

 Non-functional Requirements 

REQNF001 Shall not to fail due to inability to read sensor outputs 

REQNF002 Shall withstand component and environmental failures. 

REQNF003:  
The functions of the software shall be easily understood by the user 

(the driver). 

REQNF004 Worst case sensor response time shall be 1s. 

REQNF005 
Shall use relatively optimum system resources, such as memory, CPU 

and disk. 

REQNF006 Shall identify the root cause of failure when it occurs. 

REQNF007 Shall be easily tested for any desired features. 

REQNF008 Shall be readily installable on the Raspberry Pi 

REQNF009 Shall conform to the Raspbian OS. 

REQNF010 Shall be easy to replace the different software components at any 

desired time. 

REQNF011 Shall require minimum attention of the user (i.e., driver does not need 

to continuously glance at the display) so they can focus driving. 
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REQNF012 Shall present a user interface which is slick, intuitive and attractive. 

REQNF013 Shall notify user in the event that the system fails. 

2.  Hardware 

 Functional Requirements 

REQF009 Shall have ultrasonic sensors for range measurements of target objects 

REQF010 

The accelerometer shall be able to measure the presence or absence of 

motion to provide system power on, off or sleep mode regardless of 

the different environment variations (for example temperature and 

background noise). 

REQF011 The Control unit (i.e., the Raspberry Pi) shall handle fast calculations 

and computations from the sensors and deduce a given set of 

instructions corresponding to the sensor values 

REQF012 The Camera shall capture frames from the blind spot areas that shall 

be fed to the object detection model. 

REQF013 The LEDs shall illuminate at the start of the bus to show that they are 

in proper working conditions. They shall blink when there a body at 

close proximity with the body of the bus. 

REQF014 The Speaker shall produce an alarm when an object or vehicle is in 

close proximity to the body of the bus. 

 Non-functional Requirements 

REQNF014 

When an unpredictable failure occurs in reading values from either the 

accelerometer or the ultrasonic sensor, system shall recover briefly to 

full capacity or to safe mode respectively.  

REQNF015 The system shall be able to handle many inputs from its environment. 

REQNF016 The different components shall be enclosed in a casing in order to keep 

the connections firm and protect them from mechanical damage. 

 

3.3 System Modelling and System Architecture 

The purpose of this system modelling is to provide a comprehensive architectural overview of the 

Blind Spot Detection System (BSDS), using different architectural views to depict different 

aspects of the system. It is intended to capture and convey the significant architectural decisions 

which have been made about the system. The description and development of the architecture of 

the BSDS is modelled basing on the approach of multiple viewpoints and perspectives of the 

system stakeholders. 
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3.3.1 The Context View  

This describes the relationships, dependencies and interactions between the BSDS and its 

environment (i.e. the people and external entities that it interacts with). It also demonstrates the 

interaction scenarios and sequences. 

 

Figure 3: BSDS Context View 

Generally, there is one external entity that interacts with the system and this is the driver. The 

driver supplies some inputs to the system labelled by the “User inputs” and the system in question 

gives the driver feedback labelled as “System response”. 

 

3.3.2 The Functional View  

This defines the significant functional elements, the responsibilities of each, the interfaces they 

offer and the dependencies between elements. Functional elements, scenarios and system-wide 

processing. 
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Figure 4: BSDS Functional View 

 

Table 5:Functional Elements 

Element Name Responsibilities Interfaces  

Raspberry Pi It receives data from the sensors. It processes this data, and make decisions to 

take necessary actions based on the result. 

Raspbian OS, 

GPIO, and CSI 

Ultrasonic sensor This uses ultrasonic sound to detect the presence of objects and compute its 

distance. 

GPIO, Air 

interface 

Accelerometer This sensor detects if the bus is in motion or stationery. GPIO 

GUI display This is the visual display; the LCD which is part of this components visual 

information will be displayed. 

API, Touch Screen 

Speaker Use to give auditory feedback Aux interface 

LEDs This component blinks when the target’s distance from the bus becomes less than 

the predefined threshold. 

GPIO 

Camera Captures live feed for object detection CSI 

Power source This supplies DC power to the system Electrical 

Firmware This process reads sensor data, and presents them to the GUI, Speake and LED Raspbian OS and 

API 
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3.3.3 The Information View 

This defines the structure of the system’s stored and transient information (e.g. databases and 

message schemas) and how related aspects such as information ownership, flow, currency, latency 

and retention will be addressed. 

 

Figure 5: BSDS Information View 

 

The figure shows the data flow diagram for the BSDS. The system has two key processes. The 

firmware process reads inputs from three sensors, the cameras, ultrasonic sensors and 

accelerometer. The firmware process communicates with the client process via an inter process 

communication protocol. The client process will receive touch events from the application user 

and also present three forms of outputs. These outputs will be via LEDs, LCD and speakers as 

shown explicitly. 

 

3.3.4 The Concurrency View  

This defines the set of runtime system elements (such as operating system processes) into which 

the system’s functional elements are packaged. 
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Figure 6: BSDS Concurrency View 

 

3.3.5 Interaction scenarios 

Some of the complex interaction sequences of the BSDS and its external entities are modelled and 

represented using UML sequence diagrams to help uncover implicit requirements and constraints 

and help to provide a further more detailed level of validation. 
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Figure 7: BSDS Sequence Diagram 

 

The sequence diagram above models the interaction between the involved entities and the BSDS. 

The system is activated when the car starts moving, and this is detected by the accelerometer. The 

location parameter of the target vehicle is picked up by the ultrasonic sensor, and the system 

initiates the object detection algorithm. To detect the object in the scene, the system identifies the 

camera associated with that particular ultrasonic sensor and uses its feed. This feed is applied to a 

deep learning modal. Once the object is identified, the system shows the information on the GUI 

display. The system then determines if the target is within the threshold region, if so, the system 

initiates the blinking of the LEDs. When the distance between the target and the ego vehicle gets 

smaller, auditory feedback is initiated and the blinking rate of the LEDs increases. 

 

3.4 System Design 

System design is the process of defining the architecture, data structures, interfaces and modules 

for a given system.  The primary work product of this stage is a blueprint for the coding of 

individual modules, programs, and ultimately the entire system. 

3.4.1 Circuit design 

The figure below shows the basic circuit design of the core components. The Raspberry Pi model 

4 has been used for this implementation. Two ultrasonic sensors were employed corresponding to 

the left and right side of the target vehicle. Similarly, two LEDs were used corresponding to the 

left and right. The motion sensor used was the accelerometer with model number MPU6050. The 

camera connects to the Camera Serial interface as shown in the figure. 
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Figure 8: Circuit Diagram for BSDS 

Resistors R1 and R2 were connected to the respective cathodes of the LEDs so as to reduce the 

peak current drawn by the LEDs, hence protecting the GPIO pins from being destroyed. In the 

same sense, resistor pairs R3, R4 and R5, R6 were used to protect the GPIO pins. The voltage 

output of the ECHO pin of the HC-SR04 sensor gives 5V which is high since the GPIO pins only 

requires 3.3V. These resistor pairs therefore form a voltage divider network that reduces the 5V to 

a safe level.  

3.4.2 The GUI Wireframes 

Three screens were designed for the GUI display using Adobe XD software. These include; 

 The Splash Screen 

This can also be referred to as the Launch screen. It is the first screen shown as the program 

loads. 
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Figure 9: Splash Screen Wireframe 

 

 The Standby Screen  

This is the screen that is shown when the program is started but not yet activated by the 

motion sensor or with manual activation. 

 

 

Figure 10: Standby Screen Wireframe 

 

 The Monitor Screen 

This is shown when the program has started and is activated. In this mode, the system 

constantly scans for objects around the target vehicle and provide valuable information to 

the driver. 
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Figure 11: Monitoring Screen Wireframe 

 

3.5 System Implementation 

3.5.1 System Core Algorithm 
 

 

Figure 12: System Flow Diagram for the Core Algorithm 

The figure above shows the core algorithm of the system at a high level. It describes how the 

system was implemented how the operation flows;  

1) The program starts at system start-up of the Raspbian Operating System. 
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2) If the accelerometer detects motion, it activates the system and the active mode view is 

loaded on the display otherwise the standby mode view is displayed. The user can also 

manually turn the system ON or OFF using touch events on the touch screen. 

3) Once the active mode view is loaded, the ultrasonic sensors and LEDs are initialized. At 

the same time, virtual coordinates using screen pixels are created alongside mapping 

matrices and are stored in memory. 

4) The ultrasonic sensor then routinely monitors nearby objects. Once an object is detected, 

it identifies it using the object detection model. It then either adds it to the canvas or update 

the already existing object if had been detected before. 

5) If object is in danger zone, the system sounds the speaker and if the object is on the side of 

the bus, the LED corresponding to that side of the bus blinks. 

 

3.5.2 Coordinate Mapping 

The graph data structure was adopted for this implementation; this is an abstract data structure 

consisting of nodes and edges. In this concept, the absolute distances measured using the ultrasonic 

sensor represents the nodes while their equivalents in pixels which specifies the location of the 

object on the canvas represents the edges. 

 

Figure 13:Left[Virtual coordinates]: Right[Order of Operations during mapping of nodes to edges] 

The steps involved in coordinate mapping between the measured distance and pixel coordinates 

include; 

 Creating of the possible pixel coordinates (virtual coordinates) and their access matrices. 

This is done as the program is loading after creating the canvas widget on which the objects 

will be placed after detection.  

 After the virtual coordinate creation process is successfully completed, the system reads 

distance using the ultrasonic sensor and then maps this value to its corresponding pixel 

coordinate. 
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3.5.3 GUI implementation 

For implementation of the GUI, Python programming language and more specifically the Kivy 

framework was used. Kivy - Open-source Python library for rapid development of applications 

that make use of innovative user interfaces, such as multi-touch apps.  

The view has a large canvas on which a 2D-map of the target vehicle is placed with a boundary 

line in green. The boundary line is 1m away from the target vehicle (this limit is due to the fact 

that the maximum range of the ultrasonic sensor being used is only about 4m). 

When an object is detected by the ultrasonic sensor, the identity of this object is obtained from 

daemon thread that runs the object detection model. The distance of the object is converted to a 

pixel coordinate and finally the object is placed on the canvas along with a label describing the 

position of the object. This can be seen from the following figures. The icon of the object shown 

corresponds to the kind detected by the model. 

3.5.3.1 Splash screen 

The splash screen is the first view of the GUI. It is what the user sees as the system is starting as 

many initializations occur and these can be time consuming. This screen creates the impression 

that something is happening behind scenes. The screen shows the title of the application, “Kayoola 

BSDS” and the purpose. It shows the copyright information and the loading percentage of the 

program. 

3.5.3.2 Standby screen 

This is the view of the GUI shown to the user when the system is not yet activated. In this mode, 

the firmware running the ultrasonic sensors, LEDs are deactivated. The accelerometer firmware 

however constantly detects for motion and if motion is detected, the system enters the Monitoring 

mode. From this mode the user can go to the monitoring mode manually by pressing the system 

status switch on the GUI. 

3.5.3.3 Monitor mode screen 

In this mode as shown in the figure below the intended functionalities of the system occur. The 

view has a large canvas on which a 2D-map of a bus is placed with a dashed boundary line in 

green. The boundary line is 1m away from the bus, this limit is due to the fact that, the maximum 

range of the ultrasonic sensor being used is only about 4m. 

When an object is detected by the ultrasonic sensor, the identity of this object is obtained from 

daemon thread that runs the object detection model. The distance of the object is converted to a 

pixel coordinate and finally the object is placed on the canvas along with a label describing the 

position of the object. The icon of the object shown corresponds to the kind detected by the model. 

On the right side of the view, there is a list of cards stacked vertically that allows for interaction 

with system or to provide information to the user. The first card is for the system status, from 

which the user can turn on and off the system manually. The second card shows information on 

the category of the detected objects, alongside this categories, number of objects in each of them 

is appended in a square bracket. The third card shows the position of the detected objects and these 

locations can be Left or Right or Bottom or Top. The fourth card shows the total number of 

detected objects at the current instant. And, finally, the last card is for volume control. From this 
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card the user can disable sound by toggling the speaker icon. The user can also increase and 

decrease the volume of the auditory feedback. 

 

Figure 14: GUI Monitoring Screen mode 

3.5.4 Firmware Implementation 

The system generally has five categories of peripherals and these are shown in below. 

 

Figure 15: BSDS Peripherals 

A) The MPU6050 

MPU6050 is a Micro Electro-mechanical system (MEMS), it consists of three-axis accelerometer 

and three-axis gyroscope. It measures velocity, orientation, acceleration, displacement and other 

motion like features. Structurally, it consists of Digital Motion Processor (DMP), which has 

property to solve complex calculations. MPU6050 also consists of a 16-bit analogue to digital 

converter hardware. Due to this feature, it captures three-dimension motion at the same time.  

This module uses the I2C module for interfacing with Raspberry Pi. The accelerometer firmware 

runs on a daemon thread separate from the main program loop. It constantly detects to check if 

there’s linear or rotational acceleration. It uses an “OR” operation to detect motion, using the 

rotational and linear acceleration. 

B) The HC-SR04 
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The HC-SR04 Ultrasonic distance sensor consists of two ultrasonic transducers. The one acts as a 

transmitter which converts electrical signal into 40KHz ultrasonic sound pulses. The receiver 

listens for the transmitted pulses. If it receives them, it produces an output pulse whose width can 

be used to determine the distance the pulse travelled.  

When a pulse of at least 10 µS in duration is applied to the Trigger pin, the sensor transmits a sonic 

burst of eight pulses at 40 KHz. This 8-pulse pattern makes the “ultrasonic signature” from the 

device which is unique allowing the receiver to differentiate the transmitted pattern from the 

ambient ultrasonic noise. The eight ultrasonic pulses travel through the air away from the 

transmitter.  

Meanwhile the Echo pin goes HIGH to start forming the beginning of the echo-back signal. If 

those pulses are not reflected back, then the Echo signal will timeout after 38 ms and return low. 

If those pulses are reflected back, the Echo pin goes low as soon as the signal is received. This 

produces a pulse whose width varies between 150 µS to 25 ms, depending upon the time it took 

for the signal to be received. 

The width of the received pulse is then used to calculate the distance to the reflected object using 

the equation below; 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒)

2
 , 𝑠𝑝𝑒𝑒𝑑 = 343𝑚𝑠−1  

 

The computation of distance and reading the sensor data happens in a thread separate from the 

main loop. This operation is a blocking one; when getting the distance at a given instant of time 

the program waits till the thread returns a value. To avoid the user interface from freezing up, a 

mitigation technique was made in such a way that when the sensor fails to receive the echo sound 

after 25ms the system assumes no object was detected by the ultrasonic sensor. When the distance 

value from the ultrasonic sensor is obtained, this value which is in centimeters is mapped to the 

corresponding virtual coordinate in the main loop. 

C) The LED 

A light-emitting diode is a semiconductor light source that emits light when current flows through 

it. This is used for visual alert. Two scenarios were implemented; one turns OFF the LED while 

the other turns it ON. Using the blinking rate of 1s, this task was scheduled to turn the LED ON 

and OFF. The LEDs blink only when the target is at distance less or equal to 1m and the target is 

on the side corresponding to the LED i.e., Left or Right. 

D) The Speaker 

This is an output device used for auditory feedback, it is connected via the Aux interface and 

powered by a 5V DC source. Auditory feedback for the system was implemented using the Pygame 

module of the Python programming language. A short piece of music that plays for 32s was created 

and once an object is in the danger zone this music plays. If the object moves out of the danger 

zone, the music stops to play. 

E) Camera 
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This is an input device used to capture live feeds that can then be used to detect the object identity. 

The camera used here is the Raspberry Pi camera version 2. 

Device Connection 

Two ultrasonic sensors were used for during implementation one was to detect objects from the 

left side of the target vehicle and the other detect objects from the right side of the target vehicle. 

Similarly, two LEDs were used during implementation, one for the left side of the target vehicle 

and the other for the right side of the target vehicle. The peripherals were connected to the 

Raspberry Pi as shown below; 

Table 6: Connections of Peripherals to the Raspberry Pi 

Raspberry Pi MPU 6050 

Pin 1 (3.3V) VCC 

Pin 3 (SDA) SDA 

Pin 5 (SCL) SCL 

Pin 6 (GND) GND 

Raspberry Pi HC-SR04 (Left) 

Pin 2 (5 V) VCC 

Pin 12 (GPIO 18) TRIG 

Pin 18 (GPIO 24) ECHO (5 V) 

Pin 14 (GND) GND 

Raspberry Pi HC-SR04 (Right) 

Pin 4 (5 V) VCC 

Pin 11 (GPIO 17) TRIG 

Pin 13 (GPIO 27) ECHO (5 V) 

Pin 9 (GND) GND 

Raspberry Pi LED (Left) 

Pin 25 (GND) CATHODE 

Pin 29 (GPIO 5) ANODE 

Raspberry Pi LED(Right) 
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Pin 34 (GND) CATHODE 

Pin 31 (GPIO 6) ANODE 

 

3.5.5 The Object Detection Model 

The purpose of the object detection model in this system is to identify the object in the blind spot 

so that, the driver can make decisions accordingly. The model developed was been limited to only 

people, vehicles, motorcycles and bicycles.  

The steps taken in developing the object detection model included; 

1) Data Collection 

A total of 504 different images were collected. The comprised of images of different cars, 

motorcycles and people. These were taken from a phone camera with a 64MP resolution. 

2) Data Preprocessing 

The images were resized to a height and width of 640 pixels. They were also annotated with the 

labels corresponding to the object in the image using the graphical image annotation tool 

LabelImg. 

Table 7: Annotation of the Images 

  

 

3) Training of the Model 

The dataset was split into two with a 9:1 ratio for training and testing respectively and a label map, 

which namely maps each of the used labels to integer values was created. We downloaded a pre-

trained model; the SSD ResNet50 V1 FPN 640x640 model, since it provides a relatively good 

trade-off between performance and speed.  

We began training our custom model using our dataset from the model downloaded using Google 

Colab notebooks. 

http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz
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Table 8: Training of a Custom Object Detection Model 

  

 

We tested the performance and realized that its accuracy was good (with a 81% confidence level) 

however the speed for detection would be longer than the duration stated during Requirements 

Engineering (realizing speeds between 20-30 seconds). 

 

 

Figure 16: Results from Custom Object Detection Model 

Since scope of the project was not to design a unique deep learning AI model, a huge repository 

of object detection models was explored so as to obtain a model with optimal accuracy and speed 

characteristics that could run for the Raspbian Pi 4 model B platform. 

We chose the SSD Mobilenet V1 model for this system. This is an object detection model trained 

on the COCO (Common Objects in Context) dataset. COCO is a large-scale object detection, 

segmentation, and captioning dataset. COCO has several features some of which are: Object 

segmentation, Recognition in context, Super pixel stuff segmentation, with 330,000 images 

(>200,000 labelled). This model can detect an object from a frame with a latency of order of 
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~500ms. The Tensor Flow lite model was integrated into the system using the “tflite_runtime” 

library for edge devices. 

4) Camera configuration 

The Raspberry Pi camera was configured using the following commands; 

 Sudo apt-get update 

 Sudo apt-get dist-upgrade 

The first command updates the repositories and the second command performs the upgrade. 

The object detection feature was implemented to be an independent daemon thread. The first task 

as the program loads is initializing the Pi camera, loading the model into memory, and obtaining 

the output and input features of the model.  

The program then captures the most recent frame from the video stream and formats it to suite the 

input features and finally feeds it to the model. The output of the model is then processed based 

on the labels, the scores and classes to extract the labels of the detected objects. The program sleeps 

for 0.5s before proceeding to the next iteration. 

3.6 Test specification 

The BSDS is averagely complex and therefore involves many test activities being conducted at 

different levels of development. In order to structure the test processes and facilitate testing of the 

system, test phases have been defined as follows; - unit testing, integration testing and system 

testing. 

Unit testing evaluates the performance of an independent unit of the system, such as a piece of 

code that performs a specific purpose. Integration testing evaluates the satisfaction of how a unit 

fit into the larger system. Finally, the system testing checks to see how all units fits together to 

meet the system mission statement.
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4 Results 

4.1 Introduction 

This chapter gives the results obtained after evaluating the test specifications. It presents the results 

obtained from training and testing the models used for the object detection model for 

implementation.  

 

4.2 Results for Unit Tests 

Unit testing evaluates the performance of an independent unit of the system, such as a piece of 

code or a hardware unit that performs a specific purpose. In this section of the results, the author 

dissects the entire system into functional units that are testable, and then discusses the tests 

performed on them. 

4.4.1 The Hardware unit 

An embedded system is composed of both hardware and software domains. The hardware offers a 

platform on which the software runs, and in most cases the hardware is controlled by the software. 

The hardware comprises of; - a Raspberry Pi 4 model B that controls all other hardware 

components; two HC-SR04 sensors (ultrasonic sensors), used for range measurements of objects 

in the surrounding; an accelerometer (MPU6050), used for motion detection; two LEDs for visual 

alert; the speaker for auditory feedback, and a 5V DC power source for powering the raspberry Pi 

and the speaker.  

The test objective here was to validate the ability of the hardware to support the embedded 

software. 

A) The GUI unit 

The display of this system has three views; the splash screen, the standby mode and monitoring 

mode displays.  

The Splash Screen 

The splash screen shown below is the first view of the GUI. It is what the user sees when the 

system starts as initialization occurs in the background. The figure shows the result of running the 

GUI program and thus the outcome of the implementation using Kivy Python GUI framework. 

This code was running on the Raspbian OS. 
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Figure 17: Splash Screen  

 

The Standby Screen 

After the program loads fully, the splash screen switches to the standby mode. The view is shown 

below. This is the view of the GUI shown to the user when the system is not yet activated. In this 

mode, the firmware running the ultrasonic sensors, LEDs are deactivated. The accelerometer 

firmware however constantly detects for motion and if motion is detected, the system enters the 

Monitoring mode. From this mode the user can go to the monitoring mode manually by pressing 

the system status switch on the GUI. 

 

Figure 18: Standby Mode Screen 
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The Monitoring Mode Screen 

Once the system is activated manually or automatically by the motion sensor, the view shifts to 

the monitoring mode. The view has a large canvas on which a 2D-map of the target vehicle is 

placed with a boundary line in green. The boundary line is 1m away from the target vehicle (this 

limit is due to the fact that the maximum range of the ultrasonic sensor being used is only about 

4m). 

When an object is detected by the ultrasonic sensor, the identity of this object is obtained from 

daemon thread that runs the object detection model. The distance of the object is converted to a 

pixel coordinate and finally the object is placed on the canvas along with a label describing the 

position of the object. This can be seen from the following figures. The icon of the object shown 

corresponds to the kind detected by the model. 

 
 

Figure 19: Scenarios from the Monitoring Mode 

On the right side of the view, there is a list of cards stacked vertically that allows for interaction 

with system or to provide information to the user.  

 The first card indicates the System Status. The user can manually switch the system ON 

and OFF.  

 The second card indicates the Category of the Detected Objects, as well as the number of 

objects detected altogether from both sides.  

 The third card indicates the Position of the Detected Objects that is Left or Right.  

 The fourth card shows the total number of detected objects at the current instant.  

 The fifth card is for volume control from the speaker. From this card the user can disable 

sound by toggling the speaker icon. The user can also increase and decrease the volume of 

the auditory feedback. 

 

B) The Accelerometer firmware 

This is the motion sensor, it consists of a 3-axis accelerometer, 3-axis gyroscope, and a temperature 

sensor. The firmware was implemented in Python using the “mpu6050” library as shown below.  
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class Accelerometer: 

 

    def __init__(self, **kwargs): 

        self.sensor = mpu6050(0x68) 

        self.running = True 

        self.accel_data = self.get_accelerometer_data() 

        self.gyro_data = self.get_gyroscope_data() 

        self.moving = False 

        self.rotating = False 

        # threading.Thread(target=self.run()).start() 

 

    def get_accelerometer_data(self): 

        return self.sensor.get_accel_data() 

 

    def get_gyroscope_data(self): 

        return self.sensor.get_gyro_data() 

 

    def get_temperature(self): 

        return self.sensor.get_temp() 

 

    def get_all_data(self): 

        return self.sensor.get_all_data() 

 

    def detect_state(self, data, state_kind='accel'): 

        current_values = self.get_accelerometer_data() if state_kind == 'accel' else 

self.get_gyroscope_data() 

        difference = {'x': abs(current_values['x'] - data['x']), 

                      'y': abs(current_values['y'] - data['y']), 

                      'z': abs(current_values['z'] - data['z'])} 

        changed_axis = 0 

        for i in difference: 

            if difference[i] > 2: 

                changed_axis += 1 

        return False if changed_axis < 1 else True 

 

    def vehicle_moving(self): 

        self.moving = self.detect_state(self.accel_data) if not self.moving else True 

        self.accel_data = self.get_accelerometer_data() 

 

    def vehicle_rotating(self): 

        self.rotating = self.detect_state(self.gyro_data, state_kind='gyro') if not 

self.rotating else True 

        self.gyro_data = self.get_gyroscope_data() 

 

    def run(self): 

        while self.running: 

            self.vehicle_moving() 

            self.vehicle_rotating() 

            time.sleep(5) 

 

if __name__ == "__main__": 

    obj = Accelerometer() 

    obj.run() 
 

Figure 20: Code Compilation for the Accelerometer Unit Test 

Different methods were implemented to obtain temperature, accelerometer and gyroscope data. 

The “get_all_data” method returns the values of all these three quantities at once, unlike the 

“get_accelerometer_data” or “get_gyroscope_data” or “get_temperature”. The “__init__” method 

is an instance initialization method. The “vehicle_moving” and “vehicle_rotating” methods detect 

whether the vehicle is moving or rotating based on the accelerometer or gyroscope respectively. 

The state of the vehicle; whether it’s in motion or not is defined by the “detect_state” method. 

When the above code was executed, the result in the figure below was obtained.  The objective of 

this test scenario, was to check for the sensor functionality.  
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Figure 21: Results for Accelerometer Unit Test 

 

C) The Ultrasonic sensor firmware 

Here the HC-SR04 sensor was used, and its purpose was to measure range. From the figure below, 

distance of objects in the vicinity of the sensor within a sweep angle of <15⁰ was measured. The 

maximum range is about 4m. 
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class UltrasonicSensor: 

 

    def __init__(self, trigger, echo, **kwargs): 

        # GPIO Mode (BOARD / BCM) 

        GPIO.setwarnings(False) 

        GPIO.setmode(GPIO.BCM) 

        # set GPIO Pins 

        self.GPIO_TRIGGER = trigger 

        self.GPIO_ECHO = echo 

        # set GPIO direction (IN / OUT) 

        GPIO.setup(self.GPIO_TRIGGER, GPIO.OUT) 

        GPIO.setup(self.GPIO_ECHO, GPIO.IN) 

 

        self.running = True 

 

    def compute_distance(self): 

        # set Trigger to HIGH 

        GPIO.output(self.GPIO_TRIGGER, True) 

        # set Trigger after 0.01ms to LOW 

        time.sleep(0.00001) 

        GPIO.output(self.GPIO_TRIGGER, False) 

        start_time = time.time() 

        stop_time = time.time() 

        # save StartTime 

        while GPIO.input(self.GPIO_ECHO) == 0: 

            start_time = time.time() 

        # save time of arrival 

        while GPIO.input(self.GPIO_ECHO) == 1: 

            stop_time = time.time() 

            if stop_time - start_time > .025: 

                return None 

        # time difference between start and arrival 

        t = stop_time - start_time 

        return float("%.1f" % ((t * 34300) / 2)) 

 

    @staticmethod 

    def clean_up(): 

        GPIO.cleanup() 

 

    def run(self): 

        m = ThreadManager() 

        t = threading.Thread(target=lambda q: 

q.put(self.compute_distance()), args=(m.que, )) 

        t.start() 

        m.add_thread(t) 

        m.join_threads() 

        distance = m.check_for_return_value() 

        # print("Measured Distance = %f cm" % distance) 

        return distance 

 

    def stop(self): 

        self.running = False 

        self.clean_up() 

 

if __name__ == '__main__': 

    obj = UltrasonicSensor() 

    obj.run() 

 

Figure 22: Code Compilation for the Ultrasonic Sensor Unit Test 

The sensor is initialized during instantiation of the class. The “compute_distance” method deduce 

the distance by measuring the time it takes for the ultrasonic sound to travel to the target and back 

to the sensor. The “cleanup” method cleans up the associated GPIO pins once the process is 

terminated. The “run” method invokes the method to compute the range and this invocation 

happens in a separate thread. 
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When the above code was executed on the Raspbian OS, the result in the figure below was 

obtained. The objective of this test was to find out if the sensor can determine range of targets in 

its vicinity.  

 

Figure 23: Results for the Ultrasonic Sensor Unit Test 

 

D) The LED firmware 

For this implementation, the Raspberry Pi GPIO library was used. The LED has two pins with the 

longer being the anode. Implementation followed the design and pin configuration in chapter 3. 

The figure below shows the firmware implementation for the LED. 

class BlinkLED: 

    def __init__(self, anode, **kwargs): 

        # GPIO Mode (BOARD / BCM) 

        GPIO.setmode(GPIO.BCM) 

        GPIO.setwarnings(False) 

        # set GPIO Pins 

        self.GPIO_LED = anode 

        # set GPIO direction (IN / OUT) 

        GPIO.setup(self.GPIO_LED, GPIO.OUT) 

        self.state = False 

        self.blinking = True 

         

    def turn_off(self): 

        GPIO.output(self.GPIO_LED, GPIO.LOW) 

        self.state = False 

 

    def turn_on(self): 

        GPIO.output(self.GPIO_LED, GPIO.HIGH) 

        self.state = True 

 

    @staticmethod 

    def clean_up(): 

        GPIO.cleanup() 

 

    def run(self, turn_off=False): 

        if self.state or turn_off: 

            self.turn_off() 

        else: 

            self.turn_on() 

 

    def stop(self): 

        self.state = False 

        self.blinking = False 

        self.turn_off() 

        self.clean_up() 

 

if __name__ == '__main__': 

    obj = BlinkLED() 

    obj.run() 

  

Figure 24: Code Compilation for the LED Unit Test 
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Instantiation of the class initializes the LED. During this step, the class is invoked with the pin that 

represents the anode. The “turn_on” and “turn_off” methods are used to turn the LED on and off 

respectively. The “cleanup” methods clean the GPIO pins. The “run” methods alternately turns the 

LED ON and OFF. When the code in the figure above was executed, the two LEDs employed were 

able to blink as required.  

 

Figure 25: Result  for the LED Unit Test 

E) The Auditory feedback 

The Auditory feedback was implemented using the pygame module of Python programming 

language. A short piece of music that plays for 32s was created, once an object is in the danger 

zone this music plays. If the object moves out of the danger zone the music stops to play. The 

objective of the test was to show that the system gives auditory feedback and it performed as 

required.  

 

Figure 26: Result for the Speaker Unit Test 

F) The Object detection model 

The model was set to can identify objects from the camera feed limited to identifying people, 

vehicles, bicycles and motorcycles. The model is a Tensor Flow lite model when deployed on the 

Raspberry pi and was executed, it was able to identify the required objects.  
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Figure 27: Result  for the Object Detection Model Unit Test, Using the Pi Camera 

It was required that the video not to be but rather the information about the kind of the object. This 

information was presented by different icons shown on the GUI display. For this purpose, the code 

in the figure below was used producing the results shown on the GUI. To achieve the objective of 

only changing the icon used to represent the target, we processed the detector output as follows; 

we looped through all detections and looked up the name of the detected objects. When the 

detected object is not among the required detectable objects discard otherwise, the name is 

appended to the resultant list. 

# Loop over all detections and retrieve label if confidence is above minimum threshold 

display_str = [] 

for i in range(len(scores)): 

    if (scores[i] > min_conf_threshold) and (scores[i] <= 1.0): 

        # Draw label 

        object_name = labels[int(classes[i])]  # Look up object name from "labels" array using 

class index 

        if object_name in ('bus', 'truck', 'car'): 

            label = 'car' 

            display_str.append(label) 

        elif object_name in ('bicycle', 'motorcycle'): 

            label = 'motorbike' 

            display_str.append(label) 

        elif object_name == 'person': 

            label = 'human-handsdown' 

            display_str.append(label) 

 

if q: 

    q.queue.clear() 

    q.put(display_str) 

time.sleep(.5)  

Figure 28: Code Compilation for the Object Detection Processing Code 

The output of the code is the name of the icon corresponding to the detected target objects. In the 

figure below ’human-handsdown’ is the icon used to represent human objects. When there is no 

object in the view of the camera or the objects are those not in the list of detectable objects, the 

detector returns an empty list. 
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Figure 29: Results from the Object Detector post processing 

4.3 Integration and System test results 

Integration testing evaluates the satisfaction of how a unit fits into the larger system, and the system 

testing checks to see how all units fits together to meet the system mission statement. 

The figure below shows the fully integrated unit. The components are labelled as shown in te figure 

below. 

Table 9: BSDS System Integration 

1 Speaker 

2 Ultrasonic sensor (Right Hand Side) 

3 Pi Camera (Right Hand Side) 

4 LED (Right Hand Side) 

5 3D Casing 
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Figure 30: Fully Integrated BSDS 

The system test was accomplished using a Requirement Traceability Matrix in the table below. 

The table presents a summary of the test conducted on the system in conformance with the system 

requirements.  

This matrix typically relates the system requirements to the completed tasks. Each requirement has 

a unique ID; “REQF” and “REQN” representing the functional and nonfunctional requirements 

respectively. All requirements were ranked as either essential or conditional. The essential 

requirements are critical and must be fulfilled to realize the system in question. The Conditional 

requirements are not very critical, but are required to be fulfilled for completeness of the system 

mission.  

Table 10:Requirement Traceability Matrix 

SN Sub-System ID Requirements Description Ranking Status 

1.  Software 

REQF001 

Shall provide visual display of the location 

and distance of the objects in the blind 

spots of the bus in real-time. 

Essential Done 

REQF002 
Shall be capable of reading raw sensor 

values. 
Essential Done 

REQF003 Shall process raw sensor values into 

formats suitable for decision making as 
Essential Done 

2 

3 

4 

5 

1 
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well as formats that can be interpreted by 

the user. 

REQF004 

Shall be capable of initiating the blinking of 

LEDs when an object in the blind spot 

surpasses the defined threshold distance 

value [1m]. 

Essential Done 

REQF005 

Shall be capable of initiating auditory 

feedback when the distance between the 

bus and object gets smaller than the 

threshold [1m]. 

Essential Done 

REQF006 

The sound intensity of the auditory 

feedback shall increase when the target 

object gets closer to the body of the bus. 

Essential Done 

REQF007 Shall start on system start-up. Essential Done 

REQF008 
Shall be activated when motion of the bus 

has been detected. 
Conditional Done 

REQF009 

Shall seamlessly interact with the hardware 

sub-systems which include; - the Raspberry 

Pi and the peripheral devices. 

Essential Done 

REQT001 

Shall not to fail on regular purposes (due to 

failure to input values from the sensors), 

only at extreme bugs. 

Conditional Done 

REQT002 
Shall withstand component and 

environmental failures. 
Conditional Done 

REQT003:  
The functions of the software shall be easily 

understood by the user (the driver). 
Conditional Done 

REQT004 
The response for sensor inputs shall be 

relatively low [1s]. 
Essential Done 

REQT005 
Shall use relatively optimum system 

resources, such as memory, CPU and disk. 
Conditional Done 

REQT006 
Shall identify the root cause of failure when 

it occurs. 
Conditional Done 

REQT007 
Shall be easily tested for any desired 

features. 
Essential Done 
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REQT008 
Shall be readily installable on the 

Raspberry Pi 
Essential Done 

REQT009 
Shall conform to the Linux OS of the 

Raspberry Pi. 
Essential Done 

REQT010 

There shall be ease in replacement of the 

different software components at any 

desired time. 

Conditional Done 

REQT011 

Shall require minimum attention of the user 

(i.e., driver does not need to continuously 

glance at the display) so they can focus on 

other tasks. 

Conditional Done 

REQT012 
Shall present a user interface which is slick, 

intuitive and attractive. 
Conditional Done 

REQT013 
Shall notify user in the event that the 

system fails. 
Essential Done 

2.  Hardware 

REQF010 

The Ultrasonic Sensors shall provide an 

accurate measurement of the range distance 

to the target (object in the blind spot) within 

different environment variations (for 

example temperature, humidity and 

background noise). 

Essential Done 

REQF012 

The accelerometer shall be able to measure 

the presence or absence of motion to 

provide system power on, off or sleep mode 

regardless of the different environment 

variations (for example temperature and 

background noise). 

Essential Done 

REQF013 

The Control unit (i.e., the Raspberry Pi) 

shall handle fast calculations and 

computations from the sensors and deduce 

a given set of instructions corresponding to 

the sensor values 

Essential Done 

REQF014 

The Camera shall capture frames from the 

blind spot areas that shall be fed to the 

object detection model. 

Essential Done 
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REQF015 

The LEDs shall illuminate at the start of the 

bus to show that they are in proper working 

conditions. They shall blink when there a 

body at close proximity with the body of 

the bus. 

Essential Done 

REQF016 

The Speaker shall produce an alarm when 

an object or vehicle is in close proximity to 

the body of the bus. 

Essential Done 

REQT014 

When an unpredictable failure occurs in 

reading values from either the 

accelerometer or the ultrasonic sensor, 

system shall recover briefly to full capacity 

or to safe mode respectively. 

Essential Done 

REQT015 
The system shall be able to handle many 

inputs from its environment. 
Essential Done 

REQT016 

The different components shall be enclosed 

in a plastic casing printed by a 3D printer to 

keep the connections firm as well as protect 

the electronic components from mechanical 

damage. 

Essential Done 
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5. Conclusions, Challenges and Recommendations 

This chapter contains concluding remarks of the project that is; the conclusions challenges met 

and how they were handled. 

 

5.1 Conclusions 

From the Results presented in chapter 4, a Blind Spot Detection and Monitoring System was 

developed with a functional prototype using a Raspberry Pi, Ultrasonic sensors, and 

Accelerometer, a Camera and a Screen. 

The system realized automation by having the functionality of system startup with the 

Accelerometer detecting motion. Using the object detection functionality, the user is able to 

identify the object in a blind spot area. And with the Ultrasonic sensors, the user is able to map out 

the distance the object is from the vehicle. 

In order to minimize on the complexity of the project, we developed the system with the peripheral 

mentioned. These however cannot be used in deployment of the project further to the bus. The 

functionality that the system had at the end of this project can be used for low velocity applications 

for example Park Assist and Lane Maneuvering.  

5.2 Challenges 

Training a large data set during the development of the Object Detection Model was a long process 

and the resultant models had to be scaled down so as to run on the Raspberry Pi. Because of this, 

we decided to explore other models and optimize them so as to achieve object detection as was a 

requirement for the system. 

The Raspberry Pi has one slot for the camera module and so we were not able to realize object 

identification on both sides of the vehicle (in the prototype). We resigned to using one camera as 

a proof of concept to the functionality of the project. 

 

5.3 Recommendations 

For future advancements to the project, USB Camera can be used with a corresponding Ultrasonic 

sensor so as to demonstrate the functionality of identifying the detected object of the Ultrasonic 

sensor. 
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6. Further Work 

There are a number of tasks that need to be completed in order to have the system ready for 

deployment on the buses. The output of this project is a proof of concept that such a system can 

be realized. In this section, aspects that are required for the project to be deployed are discussed. 

6.1 Identification of Blind Spot Regions on the Bus 

Depending on the length of the vehicle, the exact blind spot areas may differ. All types of vehicles 

feature pillars that create blind spots. It is therefore very important to identify the blind spot region 

around the bus precisely so that, the sensors can be mounted at the exact locations.  

 

Figure 31: Blind Spot Regions  

6.2 Integration of CAN Communication Protocol 

Controller Area Network (CAN) is a serial network technology that was originally designed for 

the automotive industry, especially for European cars, but has also become a popular bus in 

industrial automation as well as other applications. Today all embedded systems in automobiles 

communicate via this protocol as it simplifies the network topology and is the industry standard. 

This project currently is a standalone system, but to integrate it into the bus we will need to 

configure it such that, the different components and sensors communicate to the master module 

via the CAN bus. 

6.3 Packaging for Deployment 

This may be considered as final phase of embedded system development. The sensors need proper 

packaging for them to function as desired in the operational environment. This would require a 

throughout study of the operational environment. The main goals of packaging are offering 

mechanical protection, cooling features, safety and capabilities for mobility. 

6.4 Sensor Selections 

The ultrasonic sensors and the camera used in this project were well suited for demonstrating the 

concept but cannot be realized for deployment onto the bus due to ranging issues with the 
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ultrasonic sensor and the resolution issues with the camera. This is not practical, and calls for 

sensor of longer range or even a sensor of different technology such as Radar sensors. 

6.5 Software licensing 

A software license is a document that provides legally binding guidelines for the use and 

distribution of software. Kivy is a free open-source framework distributed under the MIT license. 

The source code written for this project may not require including licensing or copyright 

information. However, when binaries are created Kivy includes dependencies which may be the 

work of others. These dependencies may therefore, need licensing. Extra effort is required in 

licensing the embedded software for commercialization. 

6.6 In-vehicle testing 

The main testing conducted for this system was the unit test, integration testing and system testing 

which was primarily bench-test. After addressing the concerns discussed in the chapter, the system 

will have to be tested in the bus and on the road. 
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