
1 | P a g e

P

MAKERERE UNIVERSITY

COLLEGE OF ENGINEERING, DESIGN, ART AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

Design and Implementation of a Blind Spot Detection and

Monitoring System for the Kayoola Buses

BY

TUSUUBIRA LATEEFA SHIBAH

17/U/10659/PS

Main Supervisor

Ms. Agatha Amara Turyagyenda

Co-supervisor

Dr. Maximus B. Byamukama

Submitted in partial fulfilment of the requirement for the award of the degree of Bachelor of

Science in Telecommunications Engineering

i | P a g e

Declaration

No portion of the work in this document has been submitted in support of an application for any

other degree or qualification of this or any other university or institution of learning. Except where

specifically acknowledged, it is the work of the author.

I have abided by the Makerere University academic integrity policy on this assignment.

Signed

Date8/02/2022...

ii | P a g e

Approval

This report has been submitted with approval of the following supervisors:

Main supervisor: Ms. Agatha Amara Turyagyenda

Official Designation: Lecturer

Department of Electrical and Computer Engineering, Makerere University

Signature:

Date:10/02/2022..................

Co-supervisor: Dr. Maximus B. Byamukama

Official Designation: Lecturer

Department of Electrical and Computer Engineering, Makerere University

Signature:

Date: ..

Field Supervisor: Mr. Simon Peter Miyingo

Official Designation: Information Systems Manager

Department of Product Development, Kiira Motors Corporation

Signature:

Date:09/02/2022........................

23/02/2022

iii | P a g e

Dedication

To my loving parents, family, academic supervisors, field supervisors at Kiira Motors Corporation

and friends for continuous words of encouragement, guidance and support during the course of

this project. May the Almighty reward them abundantly.

iv | P a g e

Acknowledgments

I would like to extend my gratitude to the Almighty God for all the bounties He has bestowed onto

me and enabling me to successfully complete not only my Final Year Project, but also four years

of Engineering amidst the global pandemic.

I thank my parents, Mr. Musinguzi Dauda and Ms. Asiimwe Sarah as well as my family for the

continuous words of encouragement, guidance and support during my time at Makerere

University.

Special thanks to the Kiira Motors Corporation (KMC) team; Mr. Simon Peter Miyingo, Mr.

Kaweesa Brian, Mr. Fred Matovu, Ms. Thatcher Nakimuli, Mr. Ian John Kavuma, Mr. Paul Isaac

Musasizi, Mr. Ali Ziryawulawo, Mr. Bimark Kyabangi and other members of staff that shared

their experience, expertise and knowledge with me.

In a special way I would like to thank my Academic Supervisors, Ms. Agatha Amara Turyagenda

and Dr. Maximus B. Byamukama for all the advice, guidance and help they rendered for the

duration of this project and during the compilation of this report.

v | P a g e

Abstract

Blind Spots are regions around vehicle that cannot be viewed by a driver while using rear view

and side mirrors. They are a major contributing factor to road traffic incidents around the world.

Changing lanes or negotiating a turn in a congested area while having no information about the

objects in the blind spot area can be dangerous. It is particularly hard for drivers of the largest

vehicles to see everything around them but the consequences of missing an obstruction could be

catastrophic.

As public transport operators operate on increasingly crowded roads, drivers need to help in

eliminating blind spots and highlight potential collisions before they occur. The Kayoola Buses,

developed by KMC potentially falls in this category. It is important that such locally developed

transport solutions integrate navigation aids for object recognition in blind spots so as to reduce

the likelihoods of RTIs

This project is focused on the Design and Implementation of a Blind Spot Detection and

Monitoring System for Kayoola buses. The system is characterized by a hardware sub-system that

measures gathers information such as motion of a vehicle, range of object in blind spot area to

vehicle as well as video feed of the object. All this information is processed within the software

sub-system so as to provide a driver with information of the object in the blind spot region.

vi | P a g e

Table of Contents
Declaration ... i

Approval ... ii

Dedication .. iii

Acknowledgments.. iv

Abstract ... v

List of Figures .. ix

List of Tables .. x

List of Abbreviations and Acronyms ... xi

1. Introduction ... 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Objectives ... 2

1.3.1 Main objective .. 2

1.3.2. Specific objectives .. 2

1.4 Justification .. 2

1.5 Scope ... 2

1.5.1 Object detection model ... 3

1.5.2 Test scope.. 3

2 Literature Review .. 4

2.1 Introduction ... 4

2.1.1 Adaptive Cruise Control ... 4

2.1.2 Active Park Assist .. 4

2.1.3 Automated Emergency Braking ... 4

2.1.4 Blind-Spot Monitor... 4

2.1.5 Parking Sensors .. 4

2.2 Blind Spot Detection Systems ... 5

2.2.1 Vision-based solution ... 6

2.2.2 Non-vision based solution .. 7

2.2.3 Hybrid solution ... 8

2.3 Sensor Technologies ... 9

2.3.1 Ultrasonic sensors ... 9

vii | P a g e

2.3.1 Camera sensors ... 9

2.3.3 Radar sensors .. 10

2.3.4 Lidar sensors ... 10

2.4 Graphical User Interface ... 10

2.5 Deep Learning ... 10

2.5.1 Computer Vision... 11

2.5.2 Object Detection ... 12

2.6 Microcontrollers .. 12

3 Methodology .. 13

3.1 Introduction .. 13

3.2 System Requirements Analysis .. 14

3.3 System Modelling and System Architecture .. 16

3.3.1 The Context View ... 17

3.3.2 The Functional View .. 17

3.3.3 The Information View .. 19

3.3.4 The Concurrency View ... 19

3.3.5 Interaction scenarios ... 20

3.4 System Design .. 21

3.4.1 Circuit design .. 21

3.4.2 The GUI Wireframes .. 22

3.5 System Implementation .. 24

3.5.1 System Core Algorithm .. 24

3.5.2 Coordinate Mapping ... 25

3.5.3 GUI implementation ... 26

3.5.3.1 Splash screen ... 26

3.5.3.2 Standby screen... 26

3.5.3.3 Monitor mode screen ... 26

3.5.4 Firmware Implementation .. 27

3.5.5 The Object Detection Model .. 30

3.6 Test specification.. 32

4 Results ... 33

4.1 Introduction ... 33

viii | P a g e

4.2 Results for Unit Tests .. 33

4.4.1 The Hardware unit .. 33

4.3 Integration and System test results ... 42

5. Conclusions, Challenges and Recommendations .. 47

5.1 Conclusions ... 47

5.2 Challenges ... 47

5.3 Recommendations ... 47

6. Further Work .. i

6.1 Identification of Blind Spot Regions on the Bus.. i

6.2 Integration of CAN Communication Protocol ... i

6.3 Packaging for Deployment ... i

6.4 Sensor Selections.. i

6.5 Software licensing ... ii

6.6 In-vehicle testing ... ii

References .. iii

ix | P a g e

List of Figures

Figure 1: Illustration of the Different sensors in a vehicle ... 9

Figure 2: Neural Networks organized in layers consisting of interconnected nodes 11

Figure 3: BSDS Context View .. 17

Figure 4: BSDS Functional View ... 18

Figure 5: BSDS Information View ... 19

Figure 6: BSDS Concurrency View .. 20

Figure 7: BSDS Sequence Diagram .. 21

Figure 8: Circuit Diagram for BSDS .. 22

Figure 9: Splash Screen Wireframe .. 23

Figure 10: Standby Screen Wireframe .. 23

Figure 11: Monitoring Screen Wireframe... 24

Figure 12: System Flow Diagram for the Core Algorithm ... 24

Figure 13:Left[Virtual coordinates]: Right[Order of Operations during mapping of nodes to edges]

... 25

Figure 14: GUI Monitoring Screen mode ... 27

Figure 15: BSDS Peripherals .. 27

Figure 16: Results from Custom Object Detection Model ... 31

Figure 17: Splash Screen .. 34

Figure 18: Standby Mode Screen .. 34

Figure 19: Scenarios from the Monitoring Mode ... 35

Figure 20: Code Compilation for the Accelerometer Unit Test ... 36

Figure 21: Results for Accelerometer Unit Test ... 37

Figure 22: Code Compilation for the Ultrasonic Sensor Unit Test .. 38

Figure 23: Results for the Ultrasonic Sensor Unit Test .. 39

Figure 24: Code Compilation for the LED Unit Test ... 39

Figure 25: Result for the LED Unit Test ... 40

Figure 26: Result for the Speaker Unit Test ... 40

Figure 27: Result for the Object Detection Model Unit Test, Using the Pi Camera 41

Figure 28: Code Compilation for the Object Detection Processing Code 41

Figure 29: Results from the Object Detector post processing .. 42

Figure 30: Fully Integrated BSDS .. 43

Figure 31: Blind Spot Regions ... i

x | P a g e

List of Tables

Table 1: Renault Koleos Blind Spot Warning System.. 5

Table 2: Volvo Blind Spot Information System ... 6

Table 3: Intervention Logic .. 13

Table 4: System Requirements ... 14

Table 5:Functional Elements .. 18

Table 6: Connections of Peripherals to the Raspberry Pi ... 29

Table 7: Annotation of the Images.. 30

Table 8: Training of a Custom Object Detection Model .. 31

Table 9: BSDS System Integration ... 42

Table 11:Requirement Traceability Matrix .. 43

xi | P a g e

List of Abbreviations and Acronyms

3D 3-Dimension

ABS Anti-lock Braking System

Adobe XD Adobe Experience Design

AI Artificial Intelligence

BLE Bluetooth Low Energy

BSDS Blind Spot Detection System

CAN Controller Area Network

CLI Command Line Interface

CNN Convolution Neural Network

DNN Deep Neural Network

GPIO General Purpose Input Output

GUI Graphical User Interface

IoT Internet of Things

KMC Kiira Motors Corporation

LED Light Emitting Diode

LIDAR Light Detection and Ranging

RADAR Radar Detection and Ranging

RAM Random Access Memory

RTI Road Traffic Incident

UN United Nations

USB Universal Serial Bus

1 | P a g e

1. Introduction

1.1 Background

Uganda has one of the highest rates of Road Traffic Incidents (RTIs) globally. Over the last decade,

the road crash fatalities recorded rose from 2,597 to 3,503 representing a growth of 25.9%. The

accident severity index is 24 people killed per 100 road crashes [1]. On average, Uganda loses 10

people per day in road traffic crashes, which is the highest level in East Africa [2]. The overall

annual cost incurred due to road crashes is currently estimated at approximately UGX 4.4 trillion

($1.2 billion), representing 5% of Uganda’s gross domestic product (GDP) [3].

In an attempt to curb the rampant RTIs, the Government of Uganda developed a comprehensive

road safety road map as one of the ways to achieve a 50% reduction in road traffic accident deaths

by 2020, as recommended by the UN resolution on Decade of Action for Road Safety (2011-2020)

[3]. It focused on road safety management through establishing infrastructure for the protection of

vulnerable road users in urban areas, driver training and testing, enforcement of traffic rules, a road

crash database, post-crash care response and coordination system.

Although these solutions were very good, they have a great limitation: Human error. A police

report in the first week of July 2017 stated that out of all the 3000 plus deaths that occurred in 2016

due to accidents, over 80% of them were caused by human error [1].

Blind spots are one of the most common sources of “Human Error.” In the United States, over

800,000 blind spot accidents occur each year with approximately 300 fatalities [4]. In Europe,

blind spots are among the main contributing factors to road accidents in that European Union Law

requires lorries to be fitted with blind spot mirrors to give drivers a wider field of vision [5]. In

Uganda, most of the RTIs are caused by reckless and careless driving that is rooted in a lack of

focus and general unawareness of other road users.

To minimize the causative effect of blind spots on RTIs and fatalities, automotive industries have

implemented blind spot detection systems. Typical systems employ various sensors and computer

vision methods for obstacle detection and driver alerts. An example is a vision-based blind-spot

warning system that provides a driver assistance interface for visualizing the cars around them on

a 3D platform, powered by neural networks for car detection and depth estimation [6]. This system

can only detect cars and possesses a high processing load due to the 3-D visual involved [6].

Another instance is Bosc-Mobility Solutions which offers a sensor-based blind-spot detection

system with two ultrasonic sensors on each side of the vehicle that monitor the space in the adjacent

lane, allowing the system to cover the blind spots. If another vehicle is situated in the monitored

area, the driver is alerted to the potential danger through a warning sign in the side mirror. If the

driver fails to see or ignores the warning and later activates the turn signal to change lanes, the

system can also trigger an audible warning. The system recognizes stationary objects on or

alongside the road, such as guardrails or parked vehicles. This system however does not provide

2 | P a g e

visual views of the precise location of the objects in the blind spot, but rather provides feedback

through the blinking of the LED and auditory feedback [7].

Traffic accidents on roads and highways represent one of the most serious problems worldwide

leading to loss of lives and damage of property. Long vehicles like the Kayoola buses that have a

length of 12.19m have multiple blind spots and yet have no Blind Spot Detection System, while

other road users are typically unaware of the extent of these blind spots leading to many accidents

occurring when cyclists or pedestrians disappear from the driver’s view.

1.2 Problem Statement

Available solutions (blind spot detection systems) have varying features such as GUI display, LED

alerts, adaptive alert level based on driver reluctance, and auditory feedback, which are equally

important and yet these are only provided for luxury vehicles at extremely expensive rates

(typically between 10 - 20 million Uganda Shillings). There is therefore a need for a locally

developed, low-cost and customized blind spot detection system for the Kayoola buses.

1.3 Objectives

1.3.1 Main objective

To develop a system that detects objects in blind spot areas of the Kayoola Buses and alerts the

driver of their proximity.

1.3.2. Specific objectives

1. To develop the hardware and software requirements specifications for the Blind Spot Detection

and Monitoring System.

2. To develop logical and physical design models for the System.

3. To implement the design specification into a functional prototype.

4. To implement an object recognition algorithm onto the Raspberry Pi.

1.4 Justification

As public transport operators operate on increasingly crowded roads in Uganda, it is hard for

drivers of long vehicles to view everything around the vehicle, yet the consequences of missing an

obstruction could be catastrophic. The Kayoola Bus, developed by KMC potentially falls in this

category. It is important that such locally developed transport solutions integrate navigation aids

for object recognition in blind spots so as to reduce the likelihoods of RTIs.

1.5 Scope
This project targeted the Kayoola buses, therefore our prototyping, deployment in future, and data

collection already done or those that will be collected in due course will be in association with the

3 | P a g e

Kayoola buses. And more specifically, since new versions of the Kayoola buses are arising we will

first restrict our study to the Kayoola EVS (The Electric bus).

1.5.1 Object detection model

The object detection being simply a feature of the system, the focus of the project will be in

identifying an object detection model and fine tuning it other than developing one from scratch.

This model was limited to the identification of cars, motorcycles, bicycles and people. Objects

other than those listed above were labelled and unknown by our deep learning model.

1.5.2 Test scope

This project employed systematic testing paradigm which involve unit testing, integration testing

and system testing. In-vehicle or road testing was not conducted.

4 | P a g e

2 Literature Review

2.1 Introduction

This chapter contains an overview of vehicle safety features including different blind spot

detection systems. This chapter also provides information on concepts like deep learning,

sensor technologies, Graphical User Interfaces (GUIs) as well as microcontrollers.

Vehicle safety features have evolved a great bunch the years. Features like crumple zones, seat

belts and airbags all provide protection if a crash occurs, however active safety assist technologies

which can prevent a crash from occurring are now a significant point of differentiation. These

include Blind Spot Monitoring (BSM), Autonomous Emergency Braking (AEB), active Lane

Keep Assist (LKA) and Intelligent Speed Adaptation (ISA) [8].

2.1.1 Adaptive Cruise Control

Adaptive Cruise Control uses the car's radar and camera modules to change the set cruising

speed if it detects a slower vehicle ahead. When adaptive cruise control is engaged, the car will

maintain a specific distance from the car in front[1].

2.1.2 Active Park Assist

Using sonar and radar, vehicles equipped with Active Park Assist will look out for and measure

empty parking spots and then actively steer the vehicle into them while the driver works the

accelerator and brake.

2.1.3 Automated Emergency Braking

Using forward-facing cameras and radar, vehicles with Automated Emergency Braking will

warn the driver of an imminent forward collision with another vehicle, pedestrian, or any other

object and then brake (stop) the vehicle on behalf of the driver if they do not take any action.

2.1.4 Blind-Spot Monitor

Using sonar sensors attached to the rear bumpers or sometimes cameras fixed in the exterior

mirrors, blind-spot monitoring systems watch adjacent lanes and alert the driver to other

vehicles that might be in the driver's blind spot or hidden by the vehicle’s profile (roof pillars).

Most cars with this feature have warning lights in the exterior mirrors that flash or blink when

a vehicle is detected close by and one lane over[1].

2.1.5 Parking Sensors

Parking sensors; also called proximity sensors aid the driver during parking maneuvers by

using ultrasonic transducers to locate obstacles such as parked cars, or curbs and alert the driver

with a series of beeps that increase in intensity as the vehicle nears the object. Sensors are

usually located on the front and rear bumpers[1].

https://www.caranddriver.com/news/a15368980/ford-debuts-fully-self-parking-car-collision-avoidance-tech-with-automated-steering/
https://www.caranddriver.com/features/a15124412/driving-in-the-dark-feature/
https://www.caranddriver.com/features/a25736661/netflix-birdbox-test-driving-blind/

5 | P a g e

2.2 Blind Spot Detection Systems

Many car manufacturers and private companies such as Bosch, Renault, Volvo, Toyota, and

Ford have developed Blind Spot Detection System (BSDS) using different methods and

techniques from each other but still harboring the same approach which is to detect object

presence in blind spot areas and alert the driver.

The Bosch blind spot detection system observes the surroundings of the vehicle when changing

lanes and warns drivers of dangers. Two ultrasonic sensors are situated on each side of the

vehicle and monitor the space in the adjacent lane, allowing the system to cover the dangerous

blind spots. If another vehicle is situated in the monitored area, the driver is alerted to the

potential danger by means of a warning sign located in the side mirror. If the driver fails to

spot or ignores this warning and activates the turn signal to change lanes, the system is also

able to trigger an audible warning.

The Renault Koleos Blind Spot Warning System alerts the driver about other vehicles in the

detection zone. The system is activated when the vehicle is in motion with its speed between

approximately 30 km/h (19 mph) and 140 km/h (87 mph). This function uses sensors installed

in the front and rear bumper of both sides.

Table 1: Renault Koleos Blind Spot Warning System

The Volvo BLIS (Blind Spot Information System) is a function designed by Volvo for

providing support for the driver when driving in dense traffic on roads with several lanes in

the same direction. It is activated when the engine is started. This is confirmed by the

indicator lamps located in the door panels blinking once. The BLIS function can also be

deactivated/activated by pressing the BLIS button on the center console.

6 | P a g e

Table 2: Volvo Blind Spot Information System

Studies on Blind Spot Detection Systems have been focused on two kinds of Blind Spot Detection

Systems that is; Vision-based and Non-vision based. Vision based systems use camera sensors

with computer vision as well as deep learning techniques while Non-vision based systems use

radar, infra-red, Bluetooth, and ultrasound as sensors for blind spot detection.

2.2.1 Vision-based solution

Yiming Zhao, Lin Bai, Lecheng Lyu, and Kinming Huang presented a design of neural network

with only a few layers for real-time embedded systems of which one of the applications was blind

spot detection. Usually, better accuracy requires deeper models and better computational costs.

However, according to them by using depth wise separable convolution, they were able to

dramatically reduce the model parameters and operations. The key focus of their research was the

transfer of blind spot detection into an image classification task. Like any engineering task, a gain

in a parameter leads to compromise in another, in this case the tradeoff was between accuracy and

cost. The limitation to this research was that only a few road and weather conditions were

considered which is practically not sufficient for such systems to be deployed in the real World

[2].

Huei-Yung, Jyun-Min, Lu-Ting, and Li-Qui proposed a vision-based driver assistance system for

highway, urban, and city environments. Their system consisted of three subsystems which are lane

change detection, forward collision warning, and overtaking vehicle identification. During the

implementation, they used two monocular car digital video recorders to capture the front and rear

views of the traffic scenes [3]. The front vehicles were identified by a new CDF-based symmetry

detection technique. For overtaking detection, the motion cue obtained from optical flow was

combined with convolutional neural networks for vehicle identification with repetitive patterns

removal. Their experiments and evaluation carried out on various real traffic scenarios

demonstrated the effectiveness of the proposed techniques [3]. However, on the downside, they

did not adopt stereo vision for the cameras making depth estimation for the front vehicles more

difficult.

D. Kwon, R. Malaiya, G. Yoon, J. Ryu, and S. Pi, developed a camera-based vehicle blind spot

detection system through the FCN (Fully Connected Networks) model. Their main research goal

was the development of a very safe and lightweight camera-based blind spot detection system for

the application in future autonomous vehicles [4]. The established research framework had five

stages: data preprocessing, feature extraction, FCN model learning, vehicle blind spot setting, and

false positive reduction. Overall, 99.45% training accuracy and 98.99% testing accuracy of the

FCN model were achieved, respectively. After deploying the software on the embedded board for

7 | P a g e

actual testing on a real road, they confirmed 93.75% average blind spot detection accuracy with

three false positives [4].

2.2.2 Non-vision based solution

N. De Raeve, M. De Schepper, J. Verhaevert, and P. Van Torre, proposed a blind spot detection

and warning system in which the system warns both the driver and the vulnerable road user. Unlike

most non-vision-based systems, their solution was based on BLE (Bluetooth Low Energy) wireless

communication and relying on RSSI (Received Signal Strength Indicator) measurements. The

system consisted of five detection nodes around the truck which advertise their presence [5]. The

vulnerable road user has a wearable device that scans these advertisement packets. The algorithm

inside the wearable interprets these messages and applies filtering on their RSSI levels [5]. During

a real-life measurement, their system performed reliably well. The first alert for a vulnerable road

user starting from the back of the truck was received at ±8 m distance. The test with multiple

vulnerable road users at the same time led to the same results [5]. When the wearable was

surrounded by many people, the system alert came at a little later time. In a group of people, only

a few needed to wear the wearable in order to receive an alert, the complete group will be alerted

due to the light and sound effect of the others [5]. The outstanding feature of this system is the fact

that, both parties (the driver and vulnerable road user) are warned. However, the overall system

context seems complex as it requires design of two standalone sub-system, one for the car and the

other is a wearable. Besides, developing the two subsystems may not be the main issue but making

sure every other road user wears is another issue requiring attention.

Liu, Wang, and Zou [6], proposed a blindspot information system. This system detects and warns

in both daytime and nighttime conditions. Their research focused on generally five (5) concepts,

and these were; - system architecture, radar system structure and algorithms, IF (Intermediate

Frequency) signal processor, motive target detector and blindspot calibration method, and system

control strategy. They used the Line Frequency Modulated Continuous Wave (LFMCW) radar

system to monitor the moving targets which are in the blindspot areas [6]. The transmitted signal

from this millimeter radar system was defined in the form,

𝑇(𝑡) = 𝜃 cos [2𝜋 (𝑓 +
𝐵𝑡

2𝑇
) 𝑡]

Where, f is the operation frequency of the FMCW radar, B is the bandwidth of modulation

frequency, T is the time of modulation frequency [6].

Using the Doppler shift in the range of the transmitted signal, the target can be identified as

stationary or moving, and if moving they were also able to deduce its range from the ego vehicle

as well as its relative velocity. They then based their choice on the clutter distribution model to

select the “cell greatest, smallest and averaging constant false-alarm rate” (CGSA-CFAR)

detection algorithm [6]. The IF signals captured from the front-end of the radar follows Rayleigh

distribution, they are first filtered by digital filter banks that can suppress noise effectively. The

filtered signal is then fed to the detector. When the researchers experimented with this detector

alongside several others, they found out that it outperforms them with a detection rate up to 97.78%

and false detection rate is lower at 2.63% [6]. For the system control, the coordinates of the radar

were mapped into the 2D coordinate of the vehicle. Based on the calibrated blind spot area

coordinate system, the developed system determines if the target is in the blind spot area or not.

The system was implemented on TI DSP-embedded platform and installed on Chery Arrizo7. Then

8 | P a g e

tests were conducted in real urban environments and considering both daytime and nighttime

conditions. Their tests showed that, for daytime and nighttime the achieved early warning rates

were 98.38% and 98.34% respectively as compared to any system build using computer vision [6].

On the downside, radar-based systems can achieve high accuracy, but rather than being expensive

they can also interfere with other wireless systems using the same frequency band.

2.2.3 Hybrid solution

J. Katarzyna, K. Maciej, and S. Wojciech, proposed safety support systems which were designed

for the needs of the race Shell Eco-marathon. Shell Eco-marathon is the world's largest race for

energy efficient vehicles [7]. Among the concepts of safety support systems, they presented three

prosed solutions for blind spot detection and selected only one of those as explained below;

i. The first concept involved the use of 9 photoelectric sensors with a range of 5m [7]. This

solution offered merits of small dimensions and low price, but had issues due to sunlight

interference, and low accuracy.

ii. The second concept involved the use of Microsoft KINECT 4 devices [7]. With the built

infrared scanner, it was possible to obtain high-resolution scanning. However, dimensions

of the device may disrupt the aerodynamics of the vehicle and direct sunlight can disrupt

the infrared scanner. In addition, devices were characterized by Kinect dead center to the

distance of 0.4 m from the device.

iii. The third concept was to use the Hokuyo laser scanner with a first class safety [7]. In this

concept, one laser scanner was to be used to get the desired effect. The device is

characterized by a wide angle and a high frequency operation of the scan. Besides the high

equipment cost, its compact design and high frequency scanning makes it the optimum

choice for blind spot detection.

When they simulated the performance of their system, it was possible to alert the driver only when

there was need [7]. The final data presentation to the driver was done in two ways but based on

driver’s preference, these methods include; showing the angle of the approaching vehicle and its

corresponding distance to the driver or toggling between three LEDs (left, center, and right) to

show the driver that their attention is required. The main downside of this solution was its cost

being very high.

As part of the DESERVE (Development platform for Sales and Efficient Drive) project funded by

the European Commission under ECSEL joint undertaking program, Pyykonen, Virtanen, and

Kyytinen developed an intelligent blind spot detection system for long vehicles carrying heavy

goods [8]. Even though their choice of the methodology was biased by the fact that, sensor

installations are limited by the regulation which says protrusions of over 50mm from the vehicle

are not allowed, the researchers had up to three sets of options under study to identify the optimal

solution of best performance, cost and reliability [8]. The first set consists of three Vislab 3D-E

cameras, one on the front and then on both sides of the vehicle. All cameras were installed near

the top of the vehicle with them facing downwards, thus, any object is elevated from the ground

level and detection is straight forward [8]. The second set had a single Vislab 3DV-E stereo camera

at the front, and additional three Continental SRR 20X radars installed under the cargo bed. One

radar at the right side, one at the left and the third on the rear. Finally, the third sensor sets had one

Vislab 3DV-E camera and several ultrasonic range finders installed under the cargo bed [8]. Their

design did not give the driver the camera feeds, but audio and visual feedback as follows. When

an obstacle comes in range, say on the right, an audible warning is given on the right side of the

9 | P a g e

vehicle which is also heard by the vulnerable user, on the other hand, the right side of the visual

display is also stressed to let the driver know the location of the candidate object. After carrying

out several tests, they were able to find out that, stereo cameras can be used to identify small

objects. The main downside of this research is that, they failed to propose the best sensor

combination from the three sets defined, and also some of their tests were only done in simulation

software and hence did not consider real World experience.

2.3 Sensor Technologies

The vehicles today have been integrated with a wide range of sensors providing critical data for

performance, safety, convenience and comfort functionality. With the significant improvement in

sensor, communication and information technology and the reliable application of obstacle

detection techniques and algorithms, automated driving fast tracking to becoming a pivotal

technology that will revolutionize the future of transportation and mobility. Sensors play a key role

to the perception of vehicle surroundings in the automated driving systems, and the use and

performance of the different integrated sensors can directly determine the safety and feasibility of

automated driving vehicles [9].

Figure 1: Illustration of the Different sensors in a vehicle

Most of the automotive manufacturers today commonly use three types of sensors in autonomous

vehicles: cameras, ultrasonic sensors, radars, and lidars.

2.3.1 Ultrasonic sensors

Ultrasonic sensors are usually mounted onto the vehicle bumpers for Assisted Parking Systems.

So far, these sensors are only expected to function when the vehicle is in motion at a speed of less

than 10 km/hour therefore, they are not able to measure small distances with 100% accuracy. In

autonomous cars, however, these sensors could potentially be used along with radar, cameras and

other sensor technologies to provide the distance measuring functionality [10].

2.3.1 Camera sensors

Autonomous cars usually have video cameras and sensors so as to observe and interpret the objects

in the road the same way human drivers do with their eyes. By equipping these vehicles with

10 | P a g e

cameras at every angle, the vehicles are capable of maintaining a 360° view of their external

environment, therefore providing a broader picture of the traffic conditions and objects around

them.

Cameras are relatively inexpensive and with their appropriate software, can detect both obstacles

in motion or static obstacles within their field of view and provide high-resolution images of the

external surroundings. Today, 3D cameras are available and being used for displaying highly

detailed and realistic images. These cameras automatically detect objects, classify them, and

determine the distances between them and the vehicle. For example, the cameras can easily identify

other cars, pedestrians, cyclists, traffic signs and signals, road markings, and curb [11].

2.3.3 Radar sensors

Radar (Radio Detection and Ranging) sensors perform a crucial role to the overall function of

autonomous driving as they send out radio waves that detect objects and gauge their distance and

speed relative to the vehicle in real time.

Both short and long-range radar sensors can be deployed all around the car and each one has

different functions. While short range (typically 24 GHz) radar applications enable blind spot

monitoring, the ideal lane-keeping assistance, and parking aids, the roles of the long range

(typically 77 GHz) radar sensors include automatic distance control and brake assistance [11].

2.3.4 Lidar sensors

Lidar (Light Detection and Ranging) sensors work in a way similar to radar systems, differing only

with the use of lasers instead of radio waves. LiDAR is a remote sensing technology that works

on the principle of emitting pulses of infrared beams (laser light) which reflects off target objects.

These reflections are then detected by the instrument and the time taken between emission and

receiving of the light pulse enables the estimation of distance between the object and the vehicle.

As the LiDAR scans the external surroundings of the vehicle, it generates a 3D representation of

the scene in the form of a point cloud [10].

2.4 Graphical User Interface

A graphical user interface (GUI) is a type of user interface where users interact with electronic

devices through visual indicator representations. There are different visual programming

languages each with its unique advantages for the development of a graphical user interface design

over the other. Examples include python, C# or Java.

2.5 Deep Learning

Deep learning is a machine learning technique that teaches computers to accomplish what comes

naturally to humans that is; learn by example. Deep learning is a key technology behind

11 | P a g e

autonomous vehicles; enabling them to recognize a stop sign, or to distinguish a pedestrian from

a poster sign along roads. [12].

In deep learning, a computer model learns to perform classification tasks directly from images,

text, or sound provided by the programmer. Deep learning models can achieve high levels of

accuracy, and sometimes even exceeding human-level performance. Models are trained by using

a very large set of labeled data and neural network architectures that contain multiple layers [12].

Most deep learning methods use neural network architectures, hence the reason why deep

learning models are usually referred to as deep neural networks. “Deep” in this instance usually

refers to the number of hidden layers within the neural network. Traditional neural networks

normally contain only 2-3 hidden layers, while deep networks could have as many as 150 [12].

Deep learning models are trained using large sets of labeled data and neural network architectures

that learn features directly from the data in the dataset without the need for manual feature

extraction [12].

Figure 2: Neural Networks organized in layers consisting of interconnected nodes

2.5.1 Computer Vision

Computer vision is a set of techniques used for extracting information from images, videos, or

point clouds provided by the programmer. Computer vision includes image recognition, activity

recognition, motion estimation, video tracking, and object detection. Examples of real-world

applications include; face recognition as a security feature for logging into smartphones,

pedestrian and vehicle avoidance in autonomous vehicles, and tumor detection in medical sector

using MRIs. Software tools such as MATLAB® and Simulink® are usually used to develop these

computer vision techniques [13].

https://www.mathworks.com/discovery/neural-network.html
https://www.mathworks.com/videos/getting-started-with-neural-networks-using-matlab-1591081815576.html
https://www.mathworks.com/discovery/medical-image-analysis.html
https://www.mathworks.com/discovery/medical-image-analysis.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html

12 | P a g e

Deep learning approaches to computer vision are useful during object detection, object

recognition, image deblurring as well as scene segmentation. Deep learning approaches used for

computer vision involve training Convoluted Neural Networks (CNNs), which learn directly from

labeled data using patterns at different scales. CNN training requires a large set of labeled training

images, videos or point clouds. Transfer learning uses pre-trained networks can accelerate this

process with less training data [13].

2.5.2 Object Detection

Object detection is a computer vision technique for identifying instances of objects in images or

videos. Object detection algorithms typically leverage machine learning or deep learning to

produce meaningful results [14].

Object detection is plays a crucial role in development of Advanced Driver Assistance Systems

(ADAS) that enable cars to detect driving lanes and also perform pedestrian detection to improve

on road safety. There are two key approaches to object detection using deep learning:

 Create and train a custom object detector. When training a custom object detector from scratch,

one needs to design a network architecture for the computer to learn the features for the objects of

interest (in the images or videos). One may also need to compile a very large set of labeled data in

order to train the CNN. The results from a custom object detector can be impressive however the

programmer needs to manually set up the layers and weights in the CNN, which requires a lot of

time and training data [14].

 Use a pre-trained object detector. The majority object detection workflows using deep learning

leverage transfer learning. This approach enables one to start with a pre-trained network and then

fine-tune it for your application they are working on. This method can provide faster results

because the object detectors have already been trained on thousands, or even millions, of images

as well as videos[14].

2.6 Microcontrollers
A microcontroller is a small and low-cost microcomputer, that is designed to perform the specific

roles of embedded systems for example displaying a microwave’s information, receiving remote

signals, and so on. Basically, a microcontroller gathers inputs, processes this information, and

outputs a certain action based on the information gathered.

A microcontroller can be viewed as a small computer because of the essential components

inside of it that is; the Central Processing Unit (CPU), the Flash Memory, the Serial Bus

Interface, the Input/Output Ports (I/O Ports), the Random-Access Memory (RAM), and in

many cases, the Electrical Erasable Programmable Read-Only Memory (EEPROM).

https://www.mathworks.com/solutions/deep-learning/deep-learning-computer-vision.html
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.mathworks.com/help/vision/image-and-video-ground-truth-labeling.html
https://www.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://blogs.mathworks.com/pick/2017/02/24/deep-learning-transfer-learning-in-10-lines-of-matlab-code/

13 | P a g e

3 Methodology

3.1 Introduction

This chapter details the steps taken to design and implement the blind spot detection and

monitoring system. The Systems Engineering Methodology was followed; where systems

requirements for the software and hardware subsystems were developed, system modelling and

architecture, design models were developed, the system was developed and implemented into a

prototype that was tested in conformance to the system requirements as illustrated in the table

below.

Table 3: Intervention Logic

SN Milestone Key Questions
Instruments, Tools, Methods &

Data Sources

1.

Requirements

Specification

(1) Who are th users of the system?

(2) What are the system features?

(3) What are the external interface

requirements?

(4) What are the functional requirements of

the system?

(5) What are the non-functional

requirements of the system?

Data Sources: Papers, Books

Methods: Desk Research,

Benchmarking, Interviews,

Surveys

Tools and Instruments: Internet

Output: SRS (System

Requirement Specification)

2.

System

Architecture and

System

Modelling

(1) What are the components of the

system?

(2) How will the components of the

system interact?

(3) What are the boundaries of the system?

(4) What other systems will the system

interact with?

(5) What are the views, models, behavior,

and structure of the system?

Data Sources: Internet, Books,

Methods: Desk Research,

Drawing/ Modelling

Tools: Star UML

Output: SAD (System

Architecture Description)

14 | P a g e

3.
Design

Specification

(1) What user interfaces does the system

have?

(2) In what environment will the system be

used?

(3) What are the inputs and the outputs of

the system?

(4) How are the inputs processed?

(5) How much power is needed for the

different components of the system to

operate?

Data Sources: Internet, SRS

Methods: Conceptual Data

Modelling

Tools: Adobe XD, Fritzing

software

Output: SDD (System Design

Document)

4. Implementation

1) What are the competences of the team

members?

2) What hardware will be used?

3) What software will be used for

development?

4) What development methodologies will

be employed to come up with the

various components of the system?

5) What Programming Language(s) will be

used to develop the system?

Data Sources: Internet, SRS,

SDD, Books

Methods: A mix of Prototyping

Tools: Equipment Datasheets,

Micro Controller Units, Sensors,

Actuators

Output: Prototype

5.
Test

Specification

(1) What is the scope of the testing?

(Components that will be tested)

(2) What type of testing will be performed?

(3) What are the objectives of testing the

system?

(4) What is the test environment?

Data Sources: Internet, SRS,

SDD

Methods: Unit Testing,

Integration Testing, System

Testing

Tools: Configuration

management tools

3.2 System Requirements Analysis

Requirements Analysis is the process of defining the expectations of the users for a system that is

to be built. It involves the tasks that are conducted to identify the needs of the stakeholders. The

requirements of the BSDS were categorized into two based on the sub-system; the software and

hardware sub-system. These were presented in the classes of Functional Requirements (REQF)

and Non-functional Requirements (REQNF).

Table 4: System Requirements

SN Sub-System ID Requirements Description

15 | P a g e

1. Software

 Functional Requirements

REQF001
Shall provide visual display of the location and distance of the objects

in the blind spots of the bus in real-time.

REQF002
Shall be capable of reading raw sensor values from the accelerometer,

ultrasonic sensors and camera.

REQF003 Shall process raw sensor values into formats suitable for decision

making as well as formats that can be interpreted by the user.

REQF004 Shall initiate the blinking of LEDs when an object in the blind spot

surpasses the defined threshold distance value [1m].

REQF005 Shall initiate auditory feedback when the distance between the bus and

object gets smaller than the threshold [1m].

REQF006 Shall start on system start-up.

REQF007 Shall be activated when motion of the bus has been detected.

REQF008 Shall seamlessly interact with the hardware sub-systems which

include; - the Raspberry Pi and the peripheral devices.

 Non-functional Requirements

REQNF001 Shall not to fail due to inability to read sensor outputs

REQNF002 Shall withstand component and environmental failures.

REQNF003:
The functions of the software shall be easily understood by the user

(the driver).

REQNF004 Worst case sensor response time shall be 1s.

REQNF005
Shall use relatively optimum system resources, such as memory, CPU

and disk.

REQNF006 Shall identify the root cause of failure when it occurs.

REQNF007 Shall be easily tested for any desired features.

REQNF008 Shall be readily installable on the Raspberry Pi

REQNF009 Shall conform to the Raspbian OS.

REQNF010 Shall be easy to replace the different software components at any

desired time.

REQNF011 Shall require minimum attention of the user (i.e., driver does not need

to continuously glance at the display) so they can focus driving.

16 | P a g e

REQNF012 Shall present a user interface which is slick, intuitive and attractive.

REQNF013 Shall notify user in the event that the system fails.

2. Hardware

 Functional Requirements

REQF009 Shall have ultrasonic sensors for range measurements of target objects

REQF010

The accelerometer shall be able to measure the presence or absence of

motion to provide system power on, off or sleep mode regardless of

the different environment variations (for example temperature and

background noise).

REQF011 The Control unit (i.e., the Raspberry Pi) shall handle fast calculations

and computations from the sensors and deduce a given set of

instructions corresponding to the sensor values

REQF012 The Camera shall capture frames from the blind spot areas that shall

be fed to the object detection model.

REQF013 The LEDs shall illuminate at the start of the bus to show that they are

in proper working conditions. They shall blink when there a body at

close proximity with the body of the bus.

REQF014 The Speaker shall produce an alarm when an object or vehicle is in

close proximity to the body of the bus.

 Non-functional Requirements

REQNF014

When an unpredictable failure occurs in reading values from either the

accelerometer or the ultrasonic sensor, system shall recover briefly to

full capacity or to safe mode respectively.

REQNF015 The system shall be able to handle many inputs from its environment.

REQNF016 The different components shall be enclosed in a casing in order to keep

the connections firm and protect them from mechanical damage.

3.3 System Modelling and System Architecture

The purpose of this system modelling is to provide a comprehensive architectural overview of the

Blind Spot Detection System (BSDS), using different architectural views to depict different

aspects of the system. It is intended to capture and convey the significant architectural decisions

which have been made about the system. The description and development of the architecture of

the BSDS is modelled basing on the approach of multiple viewpoints and perspectives of the

system stakeholders.

17 | P a g e

3.3.1 The Context View

This describes the relationships, dependencies and interactions between the BSDS and its

environment (i.e. the people and external entities that it interacts with). It also demonstrates the

interaction scenarios and sequences.

Figure 3: BSDS Context View

Generally, there is one external entity that interacts with the system and this is the driver. The

driver supplies some inputs to the system labelled by the “User inputs” and the system in question

gives the driver feedback labelled as “System response”.

3.3.2 The Functional View

This defines the significant functional elements, the responsibilities of each, the interfaces they

offer and the dependencies between elements. Functional elements, scenarios and system-wide

processing.

18 | P a g e

Figure 4: BSDS Functional View

Table 5:Functional Elements

Element Name Responsibilities Interfaces

Raspberry Pi It receives data from the sensors. It processes this data, and make decisions to

take necessary actions based on the result.

Raspbian OS,

GPIO, and CSI

Ultrasonic sensor This uses ultrasonic sound to detect the presence of objects and compute its

distance.

GPIO, Air

interface

Accelerometer This sensor detects if the bus is in motion or stationery. GPIO

GUI display This is the visual display; the LCD which is part of this components visual

information will be displayed.

API, Touch Screen

Speaker Use to give auditory feedback Aux interface

LEDs This component blinks when the target’s distance from the bus becomes less than

the predefined threshold.

GPIO

Camera Captures live feed for object detection CSI

Power source This supplies DC power to the system Electrical

Firmware This process reads sensor data, and presents them to the GUI, Speake and LED Raspbian OS and

API

19 | P a g e

3.3.3 The Information View

This defines the structure of the system’s stored and transient information (e.g. databases and

message schemas) and how related aspects such as information ownership, flow, currency, latency

and retention will be addressed.

Figure 5: BSDS Information View

The figure shows the data flow diagram for the BSDS. The system has two key processes. The

firmware process reads inputs from three sensors, the cameras, ultrasonic sensors and

accelerometer. The firmware process communicates with the client process via an inter process

communication protocol. The client process will receive touch events from the application user

and also present three forms of outputs. These outputs will be via LEDs, LCD and speakers as

shown explicitly.

3.3.4 The Concurrency View

This defines the set of runtime system elements (such as operating system processes) into which

the system’s functional elements are packaged.

20 | P a g e

Figure 6: BSDS Concurrency View

3.3.5 Interaction scenarios

Some of the complex interaction sequences of the BSDS and its external entities are modelled and

represented using UML sequence diagrams to help uncover implicit requirements and constraints

and help to provide a further more detailed level of validation.

21 | P a g e

Figure 7: BSDS Sequence Diagram

The sequence diagram above models the interaction between the involved entities and the BSDS.

The system is activated when the car starts moving, and this is detected by the accelerometer. The

location parameter of the target vehicle is picked up by the ultrasonic sensor, and the system

initiates the object detection algorithm. To detect the object in the scene, the system identifies the

camera associated with that particular ultrasonic sensor and uses its feed. This feed is applied to a

deep learning modal. Once the object is identified, the system shows the information on the GUI

display. The system then determines if the target is within the threshold region, if so, the system

initiates the blinking of the LEDs. When the distance between the target and the ego vehicle gets

smaller, auditory feedback is initiated and the blinking rate of the LEDs increases.

3.4 System Design

System design is the process of defining the architecture, data structures, interfaces and modules

for a given system. The primary work product of this stage is a blueprint for the coding of

individual modules, programs, and ultimately the entire system.

3.4.1 Circuit design

The figure below shows the basic circuit design of the core components. The Raspberry Pi model

4 has been used for this implementation. Two ultrasonic sensors were employed corresponding to

the left and right side of the target vehicle. Similarly, two LEDs were used corresponding to the

left and right. The motion sensor used was the accelerometer with model number MPU6050. The

camera connects to the Camera Serial interface as shown in the figure.

22 | P a g e

Figure 8: Circuit Diagram for BSDS

Resistors R1 and R2 were connected to the respective cathodes of the LEDs so as to reduce the

peak current drawn by the LEDs, hence protecting the GPIO pins from being destroyed. In the

same sense, resistor pairs R3, R4 and R5, R6 were used to protect the GPIO pins. The voltage

output of the ECHO pin of the HC-SR04 sensor gives 5V which is high since the GPIO pins only

requires 3.3V. These resistor pairs therefore form a voltage divider network that reduces the 5V to

a safe level.

3.4.2 The GUI Wireframes

Three screens were designed for the GUI display using Adobe XD software. These include;

 The Splash Screen

This can also be referred to as the Launch screen. It is the first screen shown as the program

loads.

23 | P a g e

Figure 9: Splash Screen Wireframe

 The Standby Screen

This is the screen that is shown when the program is started but not yet activated by the

motion sensor or with manual activation.

Figure 10: Standby Screen Wireframe

 The Monitor Screen

This is shown when the program has started and is activated. In this mode, the system

constantly scans for objects around the target vehicle and provide valuable information to

the driver.

24 | P a g e

Figure 11: Monitoring Screen Wireframe

3.5 System Implementation

3.5.1 System Core Algorithm

Figure 12: System Flow Diagram for the Core Algorithm

The figure above shows the core algorithm of the system at a high level. It describes how the

system was implemented how the operation flows;

1) The program starts at system start-up of the Raspbian Operating System.

25 | P a g e

2) If the accelerometer detects motion, it activates the system and the active mode view is

loaded on the display otherwise the standby mode view is displayed. The user can also

manually turn the system ON or OFF using touch events on the touch screen.

3) Once the active mode view is loaded, the ultrasonic sensors and LEDs are initialized. At

the same time, virtual coordinates using screen pixels are created alongside mapping

matrices and are stored in memory.

4) The ultrasonic sensor then routinely monitors nearby objects. Once an object is detected,

it identifies it using the object detection model. It then either adds it to the canvas or update

the already existing object if had been detected before.

5) If object is in danger zone, the system sounds the speaker and if the object is on the side of

the bus, the LED corresponding to that side of the bus blinks.

3.5.2 Coordinate Mapping

The graph data structure was adopted for this implementation; this is an abstract data structure

consisting of nodes and edges. In this concept, the absolute distances measured using the ultrasonic

sensor represents the nodes while their equivalents in pixels which specifies the location of the

object on the canvas represents the edges.

Figure 13:Left[Virtual coordinates]: Right[Order of Operations during mapping of nodes to edges]

The steps involved in coordinate mapping between the measured distance and pixel coordinates

include;

 Creating of the possible pixel coordinates (virtual coordinates) and their access matrices.

This is done as the program is loading after creating the canvas widget on which the objects

will be placed after detection.

 After the virtual coordinate creation process is successfully completed, the system reads

distance using the ultrasonic sensor and then maps this value to its corresponding pixel

coordinate.

26 | P a g e

3.5.3 GUI implementation

For implementation of the GUI, Python programming language and more specifically the Kivy

framework was used. Kivy - Open-source Python library for rapid development of applications

that make use of innovative user interfaces, such as multi-touch apps.

The view has a large canvas on which a 2D-map of the target vehicle is placed with a boundary

line in green. The boundary line is 1m away from the target vehicle (this limit is due to the fact

that the maximum range of the ultrasonic sensor being used is only about 4m).

When an object is detected by the ultrasonic sensor, the identity of this object is obtained from

daemon thread that runs the object detection model. The distance of the object is converted to a

pixel coordinate and finally the object is placed on the canvas along with a label describing the

position of the object. This can be seen from the following figures. The icon of the object shown

corresponds to the kind detected by the model.

3.5.3.1 Splash screen

The splash screen is the first view of the GUI. It is what the user sees as the system is starting as

many initializations occur and these can be time consuming. This screen creates the impression

that something is happening behind scenes. The screen shows the title of the application, “Kayoola

BSDS” and the purpose. It shows the copyright information and the loading percentage of the

program.

3.5.3.2 Standby screen

This is the view of the GUI shown to the user when the system is not yet activated. In this mode,

the firmware running the ultrasonic sensors, LEDs are deactivated. The accelerometer firmware

however constantly detects for motion and if motion is detected, the system enters the Monitoring

mode. From this mode the user can go to the monitoring mode manually by pressing the system

status switch on the GUI.

3.5.3.3 Monitor mode screen

In this mode as shown in the figure below the intended functionalities of the system occur. The

view has a large canvas on which a 2D-map of a bus is placed with a dashed boundary line in

green. The boundary line is 1m away from the bus, this limit is due to the fact that, the maximum

range of the ultrasonic sensor being used is only about 4m.

When an object is detected by the ultrasonic sensor, the identity of this object is obtained from

daemon thread that runs the object detection model. The distance of the object is converted to a

pixel coordinate and finally the object is placed on the canvas along with a label describing the

position of the object. The icon of the object shown corresponds to the kind detected by the model.

On the right side of the view, there is a list of cards stacked vertically that allows for interaction

with system or to provide information to the user. The first card is for the system status, from

which the user can turn on and off the system manually. The second card shows information on

the category of the detected objects, alongside this categories, number of objects in each of them

is appended in a square bracket. The third card shows the position of the detected objects and these

locations can be Left or Right or Bottom or Top. The fourth card shows the total number of

detected objects at the current instant. And, finally, the last card is for volume control. From this

27 | P a g e

card the user can disable sound by toggling the speaker icon. The user can also increase and

decrease the volume of the auditory feedback.

Figure 14: GUI Monitoring Screen mode

3.5.4 Firmware Implementation

The system generally has five categories of peripherals and these are shown in below.

Figure 15: BSDS Peripherals

A) The MPU6050

MPU6050 is a Micro Electro-mechanical system (MEMS), it consists of three-axis accelerometer

and three-axis gyroscope. It measures velocity, orientation, acceleration, displacement and other

motion like features. Structurally, it consists of Digital Motion Processor (DMP), which has

property to solve complex calculations. MPU6050 also consists of a 16-bit analogue to digital

converter hardware. Due to this feature, it captures three-dimension motion at the same time.

This module uses the I2C module for interfacing with Raspberry Pi. The accelerometer firmware

runs on a daemon thread separate from the main program loop. It constantly detects to check if

there’s linear or rotational acceleration. It uses an “OR” operation to detect motion, using the

rotational and linear acceleration.

B) The HC-SR04

28 | P a g e

The HC-SR04 Ultrasonic distance sensor consists of two ultrasonic transducers. The one acts as a

transmitter which converts electrical signal into 40KHz ultrasonic sound pulses. The receiver

listens for the transmitted pulses. If it receives them, it produces an output pulse whose width can

be used to determine the distance the pulse travelled.

When a pulse of at least 10 µS in duration is applied to the Trigger pin, the sensor transmits a sonic

burst of eight pulses at 40 KHz. This 8-pulse pattern makes the “ultrasonic signature” from the

device which is unique allowing the receiver to differentiate the transmitted pattern from the

ambient ultrasonic noise. The eight ultrasonic pulses travel through the air away from the

transmitter.

Meanwhile the Echo pin goes HIGH to start forming the beginning of the echo-back signal. If

those pulses are not reflected back, then the Echo signal will timeout after 38 ms and return low.

If those pulses are reflected back, the Echo pin goes low as soon as the signal is received. This

produces a pulse whose width varies between 150 µS to 25 ms, depending upon the time it took

for the signal to be received.

The width of the received pulse is then used to calculate the distance to the reflected object using

the equation below;

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒)

2
 , 𝑠𝑝𝑒𝑒𝑑 = 343𝑚𝑠−1

The computation of distance and reading the sensor data happens in a thread separate from the

main loop. This operation is a blocking one; when getting the distance at a given instant of time

the program waits till the thread returns a value. To avoid the user interface from freezing up, a

mitigation technique was made in such a way that when the sensor fails to receive the echo sound

after 25ms the system assumes no object was detected by the ultrasonic sensor. When the distance

value from the ultrasonic sensor is obtained, this value which is in centimeters is mapped to the

corresponding virtual coordinate in the main loop.

C) The LED

A light-emitting diode is a semiconductor light source that emits light when current flows through

it. This is used for visual alert. Two scenarios were implemented; one turns OFF the LED while

the other turns it ON. Using the blinking rate of 1s, this task was scheduled to turn the LED ON

and OFF. The LEDs blink only when the target is at distance less or equal to 1m and the target is

on the side corresponding to the LED i.e., Left or Right.

D) The Speaker

This is an output device used for auditory feedback, it is connected via the Aux interface and

powered by a 5V DC source. Auditory feedback for the system was implemented using the Pygame

module of the Python programming language. A short piece of music that plays for 32s was created

and once an object is in the danger zone this music plays. If the object moves out of the danger

zone, the music stops to play.

E) Camera

29 | P a g e

This is an input device used to capture live feeds that can then be used to detect the object identity.

The camera used here is the Raspberry Pi camera version 2.

Device Connection

Two ultrasonic sensors were used for during implementation one was to detect objects from the

left side of the target vehicle and the other detect objects from the right side of the target vehicle.

Similarly, two LEDs were used during implementation, one for the left side of the target vehicle

and the other for the right side of the target vehicle. The peripherals were connected to the

Raspberry Pi as shown below;

Table 6: Connections of Peripherals to the Raspberry Pi

Raspberry Pi MPU 6050

Pin 1 (3.3V) VCC

Pin 3 (SDA) SDA

Pin 5 (SCL) SCL

Pin 6 (GND) GND

Raspberry Pi HC-SR04 (Left)

Pin 2 (5 V) VCC

Pin 12 (GPIO 18) TRIG

Pin 18 (GPIO 24) ECHO (5 V)

Pin 14 (GND) GND

Raspberry Pi HC-SR04 (Right)

Pin 4 (5 V) VCC

Pin 11 (GPIO 17) TRIG

Pin 13 (GPIO 27) ECHO (5 V)

Pin 9 (GND) GND

Raspberry Pi LED (Left)

Pin 25 (GND) CATHODE

Pin 29 (GPIO 5) ANODE

Raspberry Pi LED(Right)

30 | P a g e

Pin 34 (GND) CATHODE

Pin 31 (GPIO 6) ANODE

3.5.5 The Object Detection Model

The purpose of the object detection model in this system is to identify the object in the blind spot

so that, the driver can make decisions accordingly. The model developed was been limited to only

people, vehicles, motorcycles and bicycles.

The steps taken in developing the object detection model included;

1) Data Collection

A total of 504 different images were collected. The comprised of images of different cars,

motorcycles and people. These were taken from a phone camera with a 64MP resolution.

2) Data Preprocessing

The images were resized to a height and width of 640 pixels. They were also annotated with the

labels corresponding to the object in the image using the graphical image annotation tool

LabelImg.

Table 7: Annotation of the Images

3) Training of the Model

The dataset was split into two with a 9:1 ratio for training and testing respectively and a label map,

which namely maps each of the used labels to integer values was created. We downloaded a pre-

trained model; the SSD ResNet50 V1 FPN 640x640 model, since it provides a relatively good

trade-off between performance and speed.

We began training our custom model using our dataset from the model downloaded using Google

Colab notebooks.

http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz

31 | P a g e

Table 8: Training of a Custom Object Detection Model

We tested the performance and realized that its accuracy was good (with a 81% confidence level)

however the speed for detection would be longer than the duration stated during Requirements

Engineering (realizing speeds between 20-30 seconds).

Figure 16: Results from Custom Object Detection Model

Since scope of the project was not to design a unique deep learning AI model, a huge repository

of object detection models was explored so as to obtain a model with optimal accuracy and speed

characteristics that could run for the Raspbian Pi 4 model B platform.

We chose the SSD Mobilenet V1 model for this system. This is an object detection model trained

on the COCO (Common Objects in Context) dataset. COCO is a large-scale object detection,

segmentation, and captioning dataset. COCO has several features some of which are: Object

segmentation, Recognition in context, Super pixel stuff segmentation, with 330,000 images

(>200,000 labelled). This model can detect an object from a frame with a latency of order of

32 | P a g e

~500ms. The Tensor Flow lite model was integrated into the system using the “tflite_runtime”

library for edge devices.

4) Camera configuration

The Raspberry Pi camera was configured using the following commands;

 Sudo apt-get update

 Sudo apt-get dist-upgrade

The first command updates the repositories and the second command performs the upgrade.

The object detection feature was implemented to be an independent daemon thread. The first task

as the program loads is initializing the Pi camera, loading the model into memory, and obtaining

the output and input features of the model.

The program then captures the most recent frame from the video stream and formats it to suite the

input features and finally feeds it to the model. The output of the model is then processed based

on the labels, the scores and classes to extract the labels of the detected objects. The program sleeps

for 0.5s before proceeding to the next iteration.

3.6 Test specification

The BSDS is averagely complex and therefore involves many test activities being conducted at

different levels of development. In order to structure the test processes and facilitate testing of the

system, test phases have been defined as follows; - unit testing, integration testing and system

testing.

Unit testing evaluates the performance of an independent unit of the system, such as a piece of

code that performs a specific purpose. Integration testing evaluates the satisfaction of how a unit

fit into the larger system. Finally, the system testing checks to see how all units fits together to

meet the system mission statement.

33 | P a g e

4 Results

4.1 Introduction

This chapter gives the results obtained after evaluating the test specifications. It presents the results

obtained from training and testing the models used for the object detection model for

implementation.

4.2 Results for Unit Tests

Unit testing evaluates the performance of an independent unit of the system, such as a piece of

code or a hardware unit that performs a specific purpose. In this section of the results, the author

dissects the entire system into functional units that are testable, and then discusses the tests

performed on them.

4.4.1 The Hardware unit

An embedded system is composed of both hardware and software domains. The hardware offers a

platform on which the software runs, and in most cases the hardware is controlled by the software.

The hardware comprises of; - a Raspberry Pi 4 model B that controls all other hardware

components; two HC-SR04 sensors (ultrasonic sensors), used for range measurements of objects

in the surrounding; an accelerometer (MPU6050), used for motion detection; two LEDs for visual

alert; the speaker for auditory feedback, and a 5V DC power source for powering the raspberry Pi

and the speaker.

The test objective here was to validate the ability of the hardware to support the embedded

software.

A) The GUI unit

The display of this system has three views; the splash screen, the standby mode and monitoring

mode displays.

The Splash Screen

The splash screen shown below is the first view of the GUI. It is what the user sees when the

system starts as initialization occurs in the background. The figure shows the result of running the

GUI program and thus the outcome of the implementation using Kivy Python GUI framework.

This code was running on the Raspbian OS.

34 | P a g e

Figure 17: Splash Screen

The Standby Screen

After the program loads fully, the splash screen switches to the standby mode. The view is shown

below. This is the view of the GUI shown to the user when the system is not yet activated. In this

mode, the firmware running the ultrasonic sensors, LEDs are deactivated. The accelerometer

firmware however constantly detects for motion and if motion is detected, the system enters the

Monitoring mode. From this mode the user can go to the monitoring mode manually by pressing

the system status switch on the GUI.

Figure 18: Standby Mode Screen

35 | P a g e

The Monitoring Mode Screen

Once the system is activated manually or automatically by the motion sensor, the view shifts to

the monitoring mode. The view has a large canvas on which a 2D-map of the target vehicle is

placed with a boundary line in green. The boundary line is 1m away from the target vehicle (this

limit is due to the fact that the maximum range of the ultrasonic sensor being used is only about

4m).

When an object is detected by the ultrasonic sensor, the identity of this object is obtained from

daemon thread that runs the object detection model. The distance of the object is converted to a

pixel coordinate and finally the object is placed on the canvas along with a label describing the

position of the object. This can be seen from the following figures. The icon of the object shown

corresponds to the kind detected by the model.

Figure 19: Scenarios from the Monitoring Mode

On the right side of the view, there is a list of cards stacked vertically that allows for interaction

with system or to provide information to the user.

 The first card indicates the System Status. The user can manually switch the system ON

and OFF.

 The second card indicates the Category of the Detected Objects, as well as the number of

objects detected altogether from both sides.

 The third card indicates the Position of the Detected Objects that is Left or Right.

 The fourth card shows the total number of detected objects at the current instant.

 The fifth card is for volume control from the speaker. From this card the user can disable

sound by toggling the speaker icon. The user can also increase and decrease the volume of

the auditory feedback.

B) The Accelerometer firmware

This is the motion sensor, it consists of a 3-axis accelerometer, 3-axis gyroscope, and a temperature

sensor. The firmware was implemented in Python using the “mpu6050” library as shown below.

36 | P a g e

class Accelerometer:

 def __init__(self, **kwargs):

 self.sensor = mpu6050(0x68)

 self.running = True

 self.accel_data = self.get_accelerometer_data()

 self.gyro_data = self.get_gyroscope_data()

 self.moving = False

 self.rotating = False

 # threading.Thread(target=self.run()).start()

 def get_accelerometer_data(self):

 return self.sensor.get_accel_data()

 def get_gyroscope_data(self):

 return self.sensor.get_gyro_data()

 def get_temperature(self):

 return self.sensor.get_temp()

 def get_all_data(self):

 return self.sensor.get_all_data()

 def detect_state(self, data, state_kind='accel'):

 current_values = self.get_accelerometer_data() if state_kind == 'accel' else

self.get_gyroscope_data()

 difference = {'x': abs(current_values['x'] - data['x']),

 'y': abs(current_values['y'] - data['y']),

 'z': abs(current_values['z'] - data['z'])}

 changed_axis = 0

 for i in difference:

 if difference[i] > 2:

 changed_axis += 1

 return False if changed_axis < 1 else True

 def vehicle_moving(self):

 self.moving = self.detect_state(self.accel_data) if not self.moving else True

 self.accel_data = self.get_accelerometer_data()

 def vehicle_rotating(self):

 self.rotating = self.detect_state(self.gyro_data, state_kind='gyro') if not

self.rotating else True

 self.gyro_data = self.get_gyroscope_data()

 def run(self):

 while self.running:

 self.vehicle_moving()

 self.vehicle_rotating()

 time.sleep(5)

if __name__ == "__main__":

 obj = Accelerometer()

 obj.run()

Figure 20: Code Compilation for the Accelerometer Unit Test

Different methods were implemented to obtain temperature, accelerometer and gyroscope data.

The “get_all_data” method returns the values of all these three quantities at once, unlike the

“get_accelerometer_data” or “get_gyroscope_data” or “get_temperature”. The “__init__” method

is an instance initialization method. The “vehicle_moving” and “vehicle_rotating” methods detect

whether the vehicle is moving or rotating based on the accelerometer or gyroscope respectively.

The state of the vehicle; whether it’s in motion or not is defined by the “detect_state” method.

When the above code was executed, the result in the figure below was obtained. The objective of

this test scenario, was to check for the sensor functionality.

37 | P a g e

Figure 21: Results for Accelerometer Unit Test

C) The Ultrasonic sensor firmware

Here the HC-SR04 sensor was used, and its purpose was to measure range. From the figure below,

distance of objects in the vicinity of the sensor within a sweep angle of <15⁰ was measured. The

maximum range is about 4m.

38 | P a g e

class UltrasonicSensor:

 def __init__(self, trigger, echo, **kwargs):

 # GPIO Mode (BOARD / BCM)

 GPIO.setwarnings(False)

 GPIO.setmode(GPIO.BCM)

 # set GPIO Pins

 self.GPIO_TRIGGER = trigger

 self.GPIO_ECHO = echo

 # set GPIO direction (IN / OUT)

 GPIO.setup(self.GPIO_TRIGGER, GPIO.OUT)

 GPIO.setup(self.GPIO_ECHO, GPIO.IN)

 self.running = True

 def compute_distance(self):

 # set Trigger to HIGH

 GPIO.output(self.GPIO_TRIGGER, True)

 # set Trigger after 0.01ms to LOW

 time.sleep(0.00001)

 GPIO.output(self.GPIO_TRIGGER, False)

 start_time = time.time()

 stop_time = time.time()

 # save StartTime

 while GPIO.input(self.GPIO_ECHO) == 0:

 start_time = time.time()

 # save time of arrival

 while GPIO.input(self.GPIO_ECHO) == 1:

 stop_time = time.time()

 if stop_time - start_time > .025:

 return None

 # time difference between start and arrival

 t = stop_time - start_time

 return float("%.1f" % ((t * 34300) / 2))

 @staticmethod

 def clean_up():

 GPIO.cleanup()

 def run(self):

 m = ThreadManager()

 t = threading.Thread(target=lambda q:

q.put(self.compute_distance()), args=(m.que,))

 t.start()

 m.add_thread(t)

 m.join_threads()

 distance = m.check_for_return_value()

 # print("Measured Distance = %f cm" % distance)

 return distance

 def stop(self):

 self.running = False

 self.clean_up()

if __name__ == '__main__':

 obj = UltrasonicSensor()

 obj.run()

Figure 22: Code Compilation for the Ultrasonic Sensor Unit Test

The sensor is initialized during instantiation of the class. The “compute_distance” method deduce

the distance by measuring the time it takes for the ultrasonic sound to travel to the target and back

to the sensor. The “cleanup” method cleans up the associated GPIO pins once the process is

terminated. The “run” method invokes the method to compute the range and this invocation

happens in a separate thread.

39 | P a g e

When the above code was executed on the Raspbian OS, the result in the figure below was

obtained. The objective of this test was to find out if the sensor can determine range of targets in

its vicinity.

Figure 23: Results for the Ultrasonic Sensor Unit Test

D) The LED firmware

For this implementation, the Raspberry Pi GPIO library was used. The LED has two pins with the

longer being the anode. Implementation followed the design and pin configuration in chapter 3.

The figure below shows the firmware implementation for the LED.

class BlinkLED:

 def __init__(self, anode, **kwargs):

 # GPIO Mode (BOARD / BCM)

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 # set GPIO Pins

 self.GPIO_LED = anode

 # set GPIO direction (IN / OUT)

 GPIO.setup(self.GPIO_LED, GPIO.OUT)

 self.state = False

 self.blinking = True

 def turn_off(self):

 GPIO.output(self.GPIO_LED, GPIO.LOW)

 self.state = False

 def turn_on(self):

 GPIO.output(self.GPIO_LED, GPIO.HIGH)

 self.state = True

 @staticmethod

 def clean_up():

 GPIO.cleanup()

 def run(self, turn_off=False):

 if self.state or turn_off:

 self.turn_off()

 else:

 self.turn_on()

 def stop(self):

 self.state = False

 self.blinking = False

 self.turn_off()

 self.clean_up()

if __name__ == '__main__':

 obj = BlinkLED()

 obj.run()

Figure 24: Code Compilation for the LED Unit Test

40 | P a g e

Instantiation of the class initializes the LED. During this step, the class is invoked with the pin that

represents the anode. The “turn_on” and “turn_off” methods are used to turn the LED on and off

respectively. The “cleanup” methods clean the GPIO pins. The “run” methods alternately turns the

LED ON and OFF. When the code in the figure above was executed, the two LEDs employed were

able to blink as required.

Figure 25: Result for the LED Unit Test

E) The Auditory feedback

The Auditory feedback was implemented using the pygame module of Python programming

language. A short piece of music that plays for 32s was created, once an object is in the danger

zone this music plays. If the object moves out of the danger zone the music stops to play. The

objective of the test was to show that the system gives auditory feedback and it performed as

required.

Figure 26: Result for the Speaker Unit Test

F) The Object detection model

The model was set to can identify objects from the camera feed limited to identifying people,

vehicles, bicycles and motorcycles. The model is a Tensor Flow lite model when deployed on the

Raspberry pi and was executed, it was able to identify the required objects.

41 | P a g e

Figure 27: Result for the Object Detection Model Unit Test, Using the Pi Camera

It was required that the video not to be but rather the information about the kind of the object. This

information was presented by different icons shown on the GUI display. For this purpose, the code

in the figure below was used producing the results shown on the GUI. To achieve the objective of

only changing the icon used to represent the target, we processed the detector output as follows;

we looped through all detections and looked up the name of the detected objects. When the

detected object is not among the required detectable objects discard otherwise, the name is

appended to the resultant list.

Loop over all detections and retrieve label if confidence is above minimum threshold

display_str = []

for i in range(len(scores)):

 if (scores[i] > min_conf_threshold) and (scores[i] <= 1.0):

 # Draw label

 object_name = labels[int(classes[i])] # Look up object name from "labels" array using

class index

 if object_name in ('bus', 'truck', 'car'):

 label = 'car'

 display_str.append(label)

 elif object_name in ('bicycle', 'motorcycle'):

 label = 'motorbike'

 display_str.append(label)

 elif object_name == 'person':

 label = 'human-handsdown'

 display_str.append(label)

if q:

 q.queue.clear()

 q.put(display_str)

time.sleep(.5)

Figure 28: Code Compilation for the Object Detection Processing Code

The output of the code is the name of the icon corresponding to the detected target objects. In the

figure below ’human-handsdown’ is the icon used to represent human objects. When there is no

object in the view of the camera or the objects are those not in the list of detectable objects, the

detector returns an empty list.

42 | P a g e

Figure 29: Results from the Object Detector post processing

4.3 Integration and System test results

Integration testing evaluates the satisfaction of how a unit fits into the larger system, and the system

testing checks to see how all units fits together to meet the system mission statement.

The figure below shows the fully integrated unit. The components are labelled as shown in te figure

below.

Table 9: BSDS System Integration

1 Speaker

2 Ultrasonic sensor (Right Hand Side)

3 Pi Camera (Right Hand Side)

4 LED (Right Hand Side)

5 3D Casing

43 | P a g e

Figure 30: Fully Integrated BSDS

The system test was accomplished using a Requirement Traceability Matrix in the table below.

The table presents a summary of the test conducted on the system in conformance with the system

requirements.

This matrix typically relates the system requirements to the completed tasks. Each requirement has

a unique ID; “REQF” and “REQN” representing the functional and nonfunctional requirements

respectively. All requirements were ranked as either essential or conditional. The essential

requirements are critical and must be fulfilled to realize the system in question. The Conditional

requirements are not very critical, but are required to be fulfilled for completeness of the system

mission.

Table 10:Requirement Traceability Matrix

SN Sub-System ID Requirements Description Ranking Status

1. Software

REQF001

Shall provide visual display of the location

and distance of the objects in the blind

spots of the bus in real-time.

Essential Done

REQF002
Shall be capable of reading raw sensor

values.
Essential Done

REQF003 Shall process raw sensor values into

formats suitable for decision making as
Essential Done

2

3

4

5

1

44 | P a g e

well as formats that can be interpreted by

the user.

REQF004

Shall be capable of initiating the blinking of

LEDs when an object in the blind spot

surpasses the defined threshold distance

value [1m].

Essential Done

REQF005

Shall be capable of initiating auditory

feedback when the distance between the

bus and object gets smaller than the

threshold [1m].

Essential Done

REQF006

The sound intensity of the auditory

feedback shall increase when the target

object gets closer to the body of the bus.

Essential Done

REQF007 Shall start on system start-up. Essential Done

REQF008
Shall be activated when motion of the bus

has been detected.
Conditional Done

REQF009

Shall seamlessly interact with the hardware

sub-systems which include; - the Raspberry

Pi and the peripheral devices.

Essential Done

REQT001

Shall not to fail on regular purposes (due to

failure to input values from the sensors),

only at extreme bugs.

Conditional Done

REQT002
Shall withstand component and

environmental failures.
Conditional Done

REQT003:
The functions of the software shall be easily

understood by the user (the driver).
Conditional Done

REQT004
The response for sensor inputs shall be

relatively low [1s].
Essential Done

REQT005
Shall use relatively optimum system

resources, such as memory, CPU and disk.
Conditional Done

REQT006
Shall identify the root cause of failure when

it occurs.
Conditional Done

REQT007
Shall be easily tested for any desired

features.
Essential Done

45 | P a g e

REQT008
Shall be readily installable on the

Raspberry Pi
Essential Done

REQT009
Shall conform to the Linux OS of the

Raspberry Pi.
Essential Done

REQT010

There shall be ease in replacement of the

different software components at any

desired time.

Conditional Done

REQT011

Shall require minimum attention of the user

(i.e., driver does not need to continuously

glance at the display) so they can focus on

other tasks.

Conditional Done

REQT012
Shall present a user interface which is slick,

intuitive and attractive.
Conditional Done

REQT013
Shall notify user in the event that the

system fails.
Essential Done

2. Hardware

REQF010

The Ultrasonic Sensors shall provide an

accurate measurement of the range distance

to the target (object in the blind spot) within

different environment variations (for

example temperature, humidity and

background noise).

Essential Done

REQF012

The accelerometer shall be able to measure

the presence or absence of motion to

provide system power on, off or sleep mode

regardless of the different environment

variations (for example temperature and

background noise).

Essential Done

REQF013

The Control unit (i.e., the Raspberry Pi)

shall handle fast calculations and

computations from the sensors and deduce

a given set of instructions corresponding to

the sensor values

Essential Done

REQF014

The Camera shall capture frames from the

blind spot areas that shall be fed to the

object detection model.

Essential Done

46 | P a g e

REQF015

The LEDs shall illuminate at the start of the

bus to show that they are in proper working

conditions. They shall blink when there a

body at close proximity with the body of

the bus.

Essential Done

REQF016

The Speaker shall produce an alarm when

an object or vehicle is in close proximity to

the body of the bus.

Essential Done

REQT014

When an unpredictable failure occurs in

reading values from either the

accelerometer or the ultrasonic sensor,

system shall recover briefly to full capacity

or to safe mode respectively.

Essential Done

REQT015
The system shall be able to handle many

inputs from its environment.
Essential Done

REQT016

The different components shall be enclosed

in a plastic casing printed by a 3D printer to

keep the connections firm as well as protect

the electronic components from mechanical

damage.

Essential Done

47 | P a g e

5. Conclusions, Challenges and Recommendations

This chapter contains concluding remarks of the project that is; the conclusions challenges met

and how they were handled.

5.1 Conclusions

From the Results presented in chapter 4, a Blind Spot Detection and Monitoring System was

developed with a functional prototype using a Raspberry Pi, Ultrasonic sensors, and

Accelerometer, a Camera and a Screen.

The system realized automation by having the functionality of system startup with the

Accelerometer detecting motion. Using the object detection functionality, the user is able to

identify the object in a blind spot area. And with the Ultrasonic sensors, the user is able to map out

the distance the object is from the vehicle.

In order to minimize on the complexity of the project, we developed the system with the peripheral

mentioned. These however cannot be used in deployment of the project further to the bus. The

functionality that the system had at the end of this project can be used for low velocity applications

for example Park Assist and Lane Maneuvering.

5.2 Challenges

Training a large data set during the development of the Object Detection Model was a long process

and the resultant models had to be scaled down so as to run on the Raspberry Pi. Because of this,

we decided to explore other models and optimize them so as to achieve object detection as was a

requirement for the system.

The Raspberry Pi has one slot for the camera module and so we were not able to realize object

identification on both sides of the vehicle (in the prototype). We resigned to using one camera as

a proof of concept to the functionality of the project.

5.3 Recommendations

For future advancements to the project, USB Camera can be used with a corresponding Ultrasonic

sensor so as to demonstrate the functionality of identifying the detected object of the Ultrasonic

sensor.

i | P a g e

6. Further Work

There are a number of tasks that need to be completed in order to have the system ready for

deployment on the buses. The output of this project is a proof of concept that such a system can

be realized. In this section, aspects that are required for the project to be deployed are discussed.

6.1 Identification of Blind Spot Regions on the Bus

Depending on the length of the vehicle, the exact blind spot areas may differ. All types of vehicles

feature pillars that create blind spots. It is therefore very important to identify the blind spot region

around the bus precisely so that, the sensors can be mounted at the exact locations.

Figure 31: Blind Spot Regions

6.2 Integration of CAN Communication Protocol

Controller Area Network (CAN) is a serial network technology that was originally designed for

the automotive industry, especially for European cars, but has also become a popular bus in

industrial automation as well as other applications. Today all embedded systems in automobiles

communicate via this protocol as it simplifies the network topology and is the industry standard.

This project currently is a standalone system, but to integrate it into the bus we will need to

configure it such that, the different components and sensors communicate to the master module

via the CAN bus.

6.3 Packaging for Deployment

This may be considered as final phase of embedded system development. The sensors need proper

packaging for them to function as desired in the operational environment. This would require a

throughout study of the operational environment. The main goals of packaging are offering

mechanical protection, cooling features, safety and capabilities for mobility.

6.4 Sensor Selections

The ultrasonic sensors and the camera used in this project were well suited for demonstrating the

concept but cannot be realized for deployment onto the bus due to ranging issues with the

ii | P a g e

ultrasonic sensor and the resolution issues with the camera. This is not practical, and calls for

sensor of longer range or even a sensor of different technology such as Radar sensors.

6.5 Software licensing

A software license is a document that provides legally binding guidelines for the use and

distribution of software. Kivy is a free open-source framework distributed under the MIT license.

The source code written for this project may not require including licensing or copyright

information. However, when binaries are created Kivy includes dependencies which may be the

work of others. These dependencies may therefore, need licensing. Extra effort is required in

licensing the embedded software for commercialization.

6.6 In-vehicle testing

The main testing conducted for this system was the unit test, integration testing and system testing

which was primarily bench-test. After addressing the concerns discussed in the chapter, the system

will have to be tested in the bus and on the road.

iii | P a g e

References

[1] “Everything You Need to Know about Car Safety Features.”

https://www.caranddriver.com/features/g27612164/car-safety-features/ (accessed Feb. 01,

2022).

[2] P. Lightweight and N. Network, “Camera-Based Blind Spot Detection with a General

Purpose Lightweight Neural Network,” 2019, doi: 10.3390/electronics8020233.

[3] F. Collision and O. Detection, “Forward Collision and Overtaking Detection †,” pp. 1–19,

2020, doi: 10.3390/s20185139.

[4] D. Kwon, R. Malaiya, G. Yoon, J. Ryu, and S. Pi, “applied sciences A Study on

Development of the Camera-Based Blind Spot Detection System Using the Deep Learning

Methodology,” no. October 2017, 2019, doi: 10.3390/app9142941.

[5] N. De Raeve, M. De Schepper, J. Verhaevert, and P. Van Torre, “A Bluetooth-Low-Energy-

Based Detection and Warning System for Vulnerable Road Users in the Blind Spot of

Vehicles,” 2020, doi: 10.3390/s20092727.

[6] G. Liu, L. Wang, and S. Zou, “A radar-based blind spot detection and warning system for

driver assistance,” Proc. 2017 IEEE 2nd Adv. Inf. Technol. Electron. Autom. Control Conf.

IAEAC 2017, pp. 2204–2208, 2017, doi: 10.1109/IAEAC.2017.8054409.

[7] J. Katarzyna, K. Maciej, and S. Wojciech, “ADVANCED DRIVER SAFETY SUPPORT

SYSTEMS FOR THE URBAN,” vol. 10, no. 4, 2015, doi: 10.21307/tp-2015-055.

[8] P. Pyykonen, A. Virtanen, and A. Kyytinen, “Developing intelligent blind spot detection

system for Heavy Goods Vehicles,” pp. 293–298, 2015.

[9] “Sensor Technology in Autonomous Vehicles | Encyclopedia.”

https://encyclopedia.pub/9236 (accessed Feb. 04, 2022).

[10] “3 types of autonomous vehicle sensors | Itransition.”

https://www.itransition.com/blog/autonomous-vehicle-sensors (accessed Feb. 04, 2022).

[11] “How Sensor Technology Will Shape the Cars of the Future I Melexis.”

https://www.melexis.com/en/tech-talks/how-sensor-technology-shape-cars-future

(accessed Feb. 04, 2022).

[12] “What Is Deep Learning? | How It Works, Techniques & Applications - MATLAB &

Simulink.” https://www.mathworks.com/discovery/deep-learning.html (accessed Feb. 04,

2022).

[13] “Computer Vision - MATLAB & Simulink.”

https://www.mathworks.com/discovery/computer-vision.html?s_tid=srchtitle_computer

vision_3 (accessed Feb. 04, 2022).

[14] “What Is Object Detection? - MATLAB & Simulink.”

https://www.mathworks.com/discovery/object-detection.html (accessed Feb. 04, 2022).

