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Abstract.  

Crop discrimination is the basis for vegetation mapping; one of the first steps to crop monitoring 

and mapping efforts. More specifically, this is used to; characterize, model, classify and map 

crops, species composition, crop type, biophysical & biochemical properties, disease and stress, 

nutrient, moisture, crop productivity etc. These changes affect crop reflectance which such that 

the reflected spectra has differences. Hyperspectral sensors, a new development offers to solve 

the crude spectral categorization; narrow contiguous bands (1-10nm) sensitive to subtle 

differences in spectral behavior to attain a higher accuracy. Despite the many studies and 

comparisons on crop discrimination using hyperspectral imagery for crop discrimination, few 

studies have been done in Africa, hence this study. Additionally, a selection of bands is needed 

to solve dimensionality as well as provide optimal data for discrimination.  This study offers a 

comparative study of the performance of hyperspectral (Hyperion) and multispectral (Landsat 

ETM+ and EO-1 ALI to determine crop discrimination.  Crop discrimination was determined 

using Stepwise Discriminant Analysis, Principal Component Analysis and a correlation study 

between Hyperion bands to determine redundant bands. From stepwise discriminant analysis, a 

subset of wavebands is selected to discriminate crops with their variability scores of 61%, 48 and 

45% for Hyperion, ALI and Landsat respectively. Principal component analysis generated 

principal components for wavebands with most lying the 1200-1600nm region. Correlation 

analysis produces lambda vs lambda plots to all from which bands redundant bands are selected. 

Classification accuracy is done using Discriminant analysis to using a selection of bands that 

generate 95% accuracy for Hyperion, 87% for ALI and 85% for ETM+.  

 

 

 

 

 

 

 

 

 

 

 

 



1 INTRODUCTION 

1.1 Background  

MAPPING the geographical, environmental, or ecological properties of natural features is 

essential for monitoring spatiotemporal dynamics of Earth surface processes and understanding 

their internal mechanisms e.g., crop mapping (Jensen, 2006). Critical and a basis for crop 

mapping discrimination of crops, which enables identification, characterization, modelling, 

classification and monitoring efforts (Thenkabail et al., 2013a).  

Crop discrimination as one of the first steps to support crop monitoring and mapping efforts; 

enables estimating of vegetation properties of ecologically or economically important species 

and invasions (Lu, He and Dao, 2019; Asner G., R.E, Ford, Metcalfe, & Liddell, 2009; Somers 

& Asner, 2013). Remote sensing has replaced traditional means that involved exhaustive, 

expensive and time-consuming field work to offer feasible, cost-effective, timely and accurate 

data that can be manipulated to various forms over large scales (Harris, 2010; Thenkabail et al., 

2004). Among others, the discriminating ability at species level largely depends on spectral 

variability/ separability enhanced by the sensor resolution. Nevertheless, different vegetation 

species show subtle variations (low inter-species spectral variability) especially during particular 

phenological stages and at typical spectral resolution and band width of multispectral sensors 

(Sobhan, 2007; Esch, Metz, Marconcini, & Keil, 2014; Galvão, Epiphanio, Breunig, & 

Formaggio, 2012). These traditional multispectral sensors data have known limitations  in 

discriminating subtle variations due to crude spectral categorization and spectral overlap between 

crop species (Govender et al., 2008, Asner et al., 2000; Pieterse, 2016). 

With the advent of hyperspectral sensors, new possibilities and parameters for spectrally 

discriminating crops have been realized. A number of recent studies have highlighted the 

importance of optimal narrowband data from specific portions of the spectrum to target and 

obtain the most sensitive/ detailed information (e.g., Blackburn, 1999; Carter, 1998; Elvidge & 

Chen, 1995; Thenkabail, 2002) and dramatically improve discrimination capabilities and 

accuracies. However, hyperspectral images are characterized by high dimensionality such that 

many bands contain redundant information.  

Previous studies have evaluated and compared the performance of both sensors at crop 

discrimination and many suggest hyperspectral sensors provide better accuracies ( e.g., Sluiter & 

Pebesma, 2010; Lu, He and Dao, 2019; Thenkabail et al., 2004; Mariotto et al., 2013 ) with 

exception of few studies that provide comparable accuracies ( e.g., Yang & Everitt, 2010; Koppe 

et al., 2010) which is attributed to data in the optimal regions. These studies suggest that 

hyperspectral imagery does not always perform better than multispectral at discrimination thus 

the need to evaluate their performance further. The need to evaluate potential of using 

hyperspectral data against multispectral with different conditions that influence crop 

characteristics to influence reflectance changes is critical. With a few such research studies 



extended in Africa, this proposal intends to compare the performance of hyperspectral and 

multispectral images for crop discrimination in Uganda. 

 

1.2 Problem 

Different crop species reflect differently at different wavelengths due to the molecular 

composition of the plants material that changes with area such that it absorbs, reflects and emits 

electromagnetic energy with distinct patterns (Mariotto et al., 2013). Given that multispectral 

sensors have many limitations with respect to their suitability to studying crop discrimination, 

hyperspectral sensors were introduced to offer amongst others better analytical methods and 

spectral resolution i.e., narrow bands which target and highlight even subtle variations in spectral 

behavior (Lu, He and Dao, 2019; Lu et al., 2020; Thenkabail et al., 2004; Thenkabail et al., 

2013b).  

Due to limitations such as limited area and repeat coverage, data costs and excessive need for 

sufficient field samples, a few studies have investigated the performance of hyperspectral data 

for vegetation mapping in Africa hence being replaced with multispectral data (Pieterse, 2016; 

Rocchini, 2010; Thenkabail et.al,2004;  Dhumal et al., 2015). With distinction in development 

stages to factors such as  phenology, climate and soils changes , a comparison of the performance 

of sensor data for crop discrimination is critical  for determining spectral variation as a basis for 

crop mapping and acreage estimation (Dhumal et al., 2015). Additionally, the use of 

hyperspectral imagery introduces issues with Hughes phenomenon, which necessitate selection 

of optimal bands to solve redundancy and dimensionality. This research compares the 

performance of hyperspectral against multispectral images for crop discrimination as well as 

select optimal narrow-bands for the task at species level for farms along Jinja-Lugazi. 

 

1.3 Objectives 

Main objective  

• Comparison of hyperspectral and multispectral image data to study the performance of 

crop discrimination of the crops on Jinja-Lugazi farms. 

Specific objectives 

• Determine the most sensitive/ optimal Hyperion wavebands for characterizing maize, 

cotton, sugarcane and a mix of crops on farms along Jinja-Lugazi.  

• Comparison of the separability of maize, cotton, sugarcane and a mix of crops at species 

level using E0-1 ALI, Landsat ETM+ and Hyperion.  

 



1.4 Justification 

Discrimination of crops is basis for crop mapping to include characterization, identification, 

modelling, monitoring and acreage estimation efforts. Due to the scale required to map and 

monitor crops, fast, generalizable and objective methods that provide results that can be quickly 

and analyzed are required and Hyperspectral imagery and data can fulfill these requirements at  

improved capabilities and accuracies (Hennessy, Clarke and Lewis, 2020). A comparison of 

sensors with respect to their performance is needed to establish and validate the capabilities and 

accuracies of these sensors in the presence of the distinct development stages that influence 

spectral variation in the crops. With computational processing and dimensionality of 

hyperspectral data still being a challenge (Varshney & Arora, 2004), more insight on the optimal 

wavebands is essential in reducing the number of redundant bands which are often more than the 

useful bands (Thenkabail et.al., 2011) hence studies to firmly establish optimal narrow 

wavebands in crop discrimination to foster crop type mapping (Mariotto et al., 2013; Thenkabail 

et al., 2013a). With no single best approach available, the optimal bands that best describe the 

vegetation characteristics and discriminate crops are determined using comprehensive analysis to 

provide complimentary and supplementary information i.e., i) principal component analysis 

(PCA), (ii) lambda–lambda R2 models (LL R2M), (iii) stepwise discriminant analysis (SDA) 

(Thenkabail, Enclona, Ashton, Legg, et al., 2004; Jain et al., 2007). The LL R2M helps to 

eliminate redundant bands and indicates those that best model the characteristics of the 

vegetation; PCA provides insight into the variation in the data and in effect reduces the 

dimensionality of the data; and SDA tests the strength of data in separating while discriminating 

species types(Jain et al., 2007).  

With spectral variation being most profound at interspecies in comparison to intraspecies, this 

proposal intends to discriminate crops at crop type level (Sobhan, 2007). To characterize, 

identify and model at interspecies or crop parameters, additional data is collected and analyzed.  



1.5  Description  of Study area 

 

Jinja -Lugazi is located in Southern part of Uganda bordering Lake Victoria and are among the 

fastest growing and populated districts in Uganda. These two are well endowed with high 

amounts of rainfall ranging from 780-1200mm and average precipitation of 999.9mm with rainy 

months through months of January, March, April, May, October, November and December 

occurring in two seasons. Major crops grown in Jinja include beans, cassava, groundnuts, cotton, 

sugarcane, maize, millet and yams with cash crops being coffee and tea among others. For 

Lugazi, main crops grown is sugarcane covering a large area as its for commercial produce.  

The high rainfall amounts in the region also lead to increased floods during this season. 

Rainwater harvesting is defined as the method of collection, concentration and storage of 

rainwater that runs off a natural or man-made catchment surface for future use (Rahman 2017).  

Available water resources in include lakes Victoria, river Nile and groundwater but due to the 

competing demand for water uses, these sources have an increasing water stress and yet the 

groundwater aquifers dry out during the dry spells (Michael 2012).  
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2 Literature review 

2.1 Vegetation mapping 

Vegetation mapping is an important task for managing and monitoring of vegetation properties 

to provide insight into the plant physiological status and vegetation community features and 

further support ecosystem conservation and management as well a understand biodiversity 

pattern (Fourty et.al., 1996; Blackburn, 2007, Committee on Global Change Research, National 

Research Council, 1999).  

Crop mapping includes the quantification for classification, modelling and identification of 

biochemical and biophysical of plant characteristics to determine the plant structure, physiology 

and water content (Strachan et al. 2002), detect stress (Carter, 1998), identify crops and invasions 

and determine acreage to crop productivity (McGwire et al. 2000; Galvão et.al., 2018; Mariotto 

et al., 2013) as in precise agriculture. The characteristics include biomass, leaf area index (LAI), 

pigment content (e.g., chlorophyll, carotenoid, anthocyanin), stress (e.g., due to drought or 

disease or metal), management properties (e.g., nitrogen application, tillage, weed identification 

and crop typing), and other biochemical properties (e.g., lignin, cellulose, plant residue) 

(Thenkabail et.al., 2011; Ullah et.al., 2012; Technology et al., 2003; Aboelghar, Arafat and 

Farag, 2013).   

Crop mapping is only possible with a distinction/discrimination of crops or characteristics being 

mapped such as to show their distribution.  

 

2.2 Crop discrimination 

Discrimination is the building block of all mapping, classification, modelling and 

characterization of physical/chemical features. Crop discrimination with starting level at species 

allows (a) modeling biophysical and yield characteristics of agricultural crops (Thenkabail et al., 

2000; Thenkabail, Smith, & De-Pauw, 2002), (b) measuring chlorophyll content of plants 

(Blackburn & Ferwerda, 2008), (c) sensing subtle variations in leaf pigment concentrations 

(Blackburn & Ferwerda, 2008), (d) extracting biochemical variables such as nitrogen and lignin 

(Houborg & Boegh, 2008), (e) detecting crop moisture variations (Colombo, et.al., 2011), (f) 

assessing absolute water content in plant leaves (Jollineau & Howarth, 2008), (g) identifying 

small differences in percent green vegetation cover (Chen, et.al., 2008), (h) detecting plant stress 

(Thenkabail et al., 2004), and (i) discriminating land-cover types (Thenkabail et al., 2004). These 

studies have made significant advances in understanding, modeling, and mapping various 

biophysical and biochemical quantities of agricultural crops. 

 

Crops are very distinct in their development stages and show different phenological 

characteristics and timings according to their nature (Dhumal et al., 2015). Even for the same 

crop and growing season, the duration and magnitude of stage can differ between varieties owing 

to environmental factors hence introducing variability inter and intra-species (Galvao, 2011; 



Prospere, Mclaren and Wilson, 2014). These variations are more pronounced and visible at inter-

species level than  at intraspecies level which occurs due to changes in molecular structure 

(Sobhan, 2007). Inter-species variability is a result of differences in phenological patterns, 

growth stages and plant color, size, etc., while intra-species variability is as a result of stress, age 

differences, precipitation, micro-climate, soil characteristics, phenology, topography, stress etc. 

(Smith et al., 2004; Carter, 1993; Carter, 1994; Portigal et al., 1997; Roberts et al., 1998; Gracia 

and Ustin, 2001) 

Species discrimination proves advantageous  to reveal species composition (invasive, 

commercially valuable and type), monitor changes in species richness, compositions and 

distribution / acreage among others making it viable to recognize the succession process of the 

eco-system (Lu, He and Dao, 2019; Asner G., R.E, Ford, Metcalfe, & Liddell, 2009; Somers & 

Asner, 2013; Sobhan, 2007; Dhumal et al., 2015).  To discriminate crops at intra-species level 

i.e., crop type mapping and characterization, additional data is required (Sobhan, 2007).  

2.2.1 Factors affecting crop discrimination  

Factor affecting crop discrimination are grouped into 5 categories; biophysical, crop 

development, management, crop calendar and regional aspects.  

Biophysical; Each crop belongs to a family, species etc. in the lowest scale, each crop belongs 

toa cultivar and plants are expected to be homogeneous at this stage concerning heir genotypes 

and phenotypes. At species level, its expected plants depart from homogeneity. In terms of 

remote sensing, the differences are related to aspects such as leaf pigment, leaf structure, 

duration of life cycle, plant structure, height and physiology such as to affect reflectance 

(Gausman,1995). 

Crop development; at different phenological stages, crops are distinct and this is classified by 

their life cycle into annual, perennial and semi-perennial crops. Annual Crops are planted once or 

3 times a year, perennial crops can stay in field for many years while semi-perennial remain in 

field for few years e.g, sugarcane is a semi-perennial crop. These impacts on growth changes 

e.g., flowering, germination etc. () 

Crop management; farmers use distinct management practices depending on cultivated crop e.g., 

type of pruning for coffee, technological use in harvesting, tree spacing. These are used to 

distinguish between crops () 

Regional; with regards to soil type, topology, precipitation, etc., crops grow different such as to 

have distinctions.  These can be used to discriminate amongst crops () 

Comparison of select crops based on factors above 

Crop species Phenological type Cropping patterns  

sugarcane Semi-perennial Single cropping Thick (less 

planophile canopy), 

1-2m height,  



Maize Annual  Single cropping 

Multiple cropping 

Long leaves, 1-2m 

height, 

cotton Annual  Single cropping 

intercropping 

 

Beans  Annual  Multiple cropping 

intercropping 

 

Leguminous -broad 

leaves, planophile 

canopy, 

Table 1; A table showing crop species and their characteristics. 

 

2.3 Remote sensing as a tool for Crop Discrimination at species level 

Traditionally, species discrimination involved exhaustive and time-consuming field work which 

is dependent on taxonomic information and visual estimation of plant cover which proves to be 

costly and difficult over large areas (Sobhan, 2007).  

Remote sensing, however  offers a quick , practical , economic and efficient means to spectrally 

distinguish crops over a larger area with improved capabilities using enhanced processing 

techniques that are robust, accurate and fast (Miglani et al., 2008; Verrelst et al., 2015; Pieterse, 

2016) thus improving crop discrimination. These methods are based on spectral differences 

between crops which occur as a result of photosynthetic activity, age differences, stress, 

environmental factors, phenology, soil, climate, topology, precipitation recorded from leaf 

reflectance, field reflectance or remotely sensed imagery (Begue et al., 2007; Thenkabail et.al., 

2004; Smith et.al., 2004) for intra-species and phenology, cell structure, moisture content, 

nutrient, biochemical and biophysical properties (Gausman, 1985; Smith et.al.,2004; Gracia and 

Ustin, 2001; Thenkabail et al., 2015; Thenkabail et al., 2013; Marshall and Thenkabail (2015, 

2014) at interspecies level. Discrimination at inter-species level is the basis for all.  

 

2.3.1 Factors influencing crop discrimination using remote sensing 

Influencing the discrimination of crops using remote sensing are factors to include spatial, 

temporal and spectral resolution.  

The spatial resolution influences spatial heterogeneity and accurate location i.e., variability 

increases with spatial resolution however causes a reduction in classification performance due to 

reduced averaging of pixels (Sobhan, 2007; Begue et al., 2017 ; Mariotto et al., 2013; Dhumal et 

al., 2015; Verrelst et al., 2015; Lu, He and Dao, 2019). This is particularly important when 

considering the spatial arrangement of crops (crop patterns) and texture (Begue et.al., 2017; Gao, 

2009).  

Spectral resolution determines data /detail at a point data. Recent research has demonstrated that 

optimal information required to quantify crop characteristics is present in a few specific narrow 

bands at parts of the spectrum(Chan & Paelinckx, 2008; Thenkabail, Enclona, Ashton, & Van 

Der Meer, 2004), and can dramatically improve discrimination capabilities and classification 



accuracies for various agricultural crops, relative to broadbands such as Landsat Thematic 

Mapper (TM) and Système Pour l'Observation de la Terre (SPOT) High Resolution Visible 

(HRV) (Lee, Cohen, Kennedy, Maiersperger, & Gower, 2004; Thenkabail, Enclona, Ashton, 

Legg, et al., 2004).  

Temporal resolution determines the phenological differences in crops. Phenology has a well-

defined temporal pattern, which can be used to characterize an individual species and 

discriminate it from others (Turner et al., 2003; Underwood, Ustin, and DiPietro, 2003). Timing 

in image acquisition for stages to allow optimal crop i.e. ,information about crops is time 

sensitive (Mariotto et al., 2013).  Crop cycle affects chances to acquiring optimal window with 

cloud free images (higher for perennial crops) (Dhumal et al., 2015). Two species can have 

different discriminatory probability at different times of the year largely to the change of 

phenological stages of plant species (Sobhan, 2007).  

Additionally, the performance of sensor at spectral variation in reflectance spectra is enhanced 

by its signal to noise ratio.  

 

2.4 Sensors used for crop discrimination using remote sensing 

2.4.1 Multispectral imagery; 

These offer broadband data at comparable spatial resolutions. Landsat ETM+, is the most 

commonly used multispectral sensor with advantage of older imagery archive. Images are 

characterized with 30*30m spatial resolution, 16-day temporal resolution, 6 multispectral bands 

(10 total) provided at 16bit. These images are distributed at different levels of correction with 

level1T provided in units top-of atmospheric radiance i.e., geometric, and radiometric corrected 

(USGS; Xie, Sha and Yu, 2008). Particularly noteworthy are the high signal to noise ratio and 

signal to noise ratio comparable to EO-1 sensors as well as the geometric fidelity and calibration 

levels for images provided by OLI. Prior to use, non-multispectral bands are dropped ((Peña and 

Brenning, 2015).  

EO-1 ALI is a multispectral sensor similar on-board the Earth Observing One (EO-1) satellite 

with spectral bands similar to Landsat OLI. Data is provided at different levels of correction  

e.g., geometric and radiometric correction for Level 1T in units of top-of atmosphere radiance. It 

is important to note that thermal bands are dropped when using EO-1 ALI. 

2.4.2 Hyperspectral imagery 

Most commonly used is the EO-1 Hyperion, a spaceborne sensor onboard the Earth Observing 

One (E0-1) satellite, set up for experimental comparison with Landsat and provides a spectrum 

of 350-2500nm of the electromagnetic spectrum a with 1-10nm sampling rate spanning over 242 

spectral bands and provided at level 1 calibration. It provides comparable spatial and temporal 

resolution to Landsat (30*30 m and 16 days respectively). It’s the only spaceborne hyperspectral 

sensor that spans over Uganda and provided at zero cost and provides images until 2017 to 

allows study of specific characteristics of crops (Thenkabail et.al., 2013).  



From the 242 bands, uncalibrated bands are dropped as well as wavebands in atmospheric 

windows and water bands as they have high noise ( Galvao et.al, 2018; Begue et.al, 2018; 

Thenkabail, Enclona, Ashton, Legg, et al., 2004; Miglani et al., 2008; Thenkabail et al., 2013a; 

Marshall and Thenkabail, 2015).  

• Uncalibrated bands-band 1-7, band 58-76, band 223-242 

• Atmospheric /water bands- band 121-126, band167-bnad180, band 220-22 

The radiance values are converted to sensor reflectance prior to data analysis using FLAASH 

algorithm (Mariotto et al., 2013; Thenkabail et al., 2013a; Hennessy, Clarke and Lewis, 2020; 

Lu et al., 2020).In regards to atmospheric corrections, the original at-sensor reflectance data is 

considered the best option in comparison with other atmospheric corrections (Thenkabail et al., 

2013a). 

 

 A comparison of hyperspectral and multispectral sensors 

parameters    

sensor Hyperion EO-1 ALI Landsat ETM+ 

Spatial resolution 30x30 m 30x30m 30x30m 

Swath  7.7 km 37 km 185 km 

Number of bands 

(multipspectral) 

220 bands 10 bands 7 bands 

Temporal resolution 16 days 16 days 16 days 

Spectral resolution 1-10nm   

Radiometric resolution  12 bits 8bits  

Spectral coverage Contiguous 

bands 

Discrete bands Discrete bands 

Table 2; A comparsion of the characteristics of the different sensors. 

 

Dimensionality: Are all bands important? 

The high dimensionality of hyperspectral data also known as Hughes Phenomenon is known to 

cause imprecise class estimation in the spectral feature space and can lower classification 

accuracy and requires more training samples in order to maintain minimum statistical confidence 

and functionality. (Clark et.al., 2005). Studies by Thenkabail et al., (2004) Thenkabail (2019) 

and Mariotto et al.( 2013) highlight the importance of optimal/most sensitive wabands from 

contigous/ collinear bands in capturing and discriminating the subtle differences in targets and 

that alone can produce accuracy such as other bands are redundant ((Miglani et al., 2008; 

Thenkabail et al., 2013a; Hennessy, Clarke and Lewis, 2020; Mariotto et.al., 2013; Thenkabail 



et.al., 2009; Thenkabail et.al., 2013b; Dhumal et.al., 2015; Hennessy et.al., 2020). Band 

selection solves redundancy while highlighlighting optimal bands for discrimination.  

A comparison of bands selected frm previos studies to use for crop discrimination using 

Hyperion 

Vaiphasa et al., (2005) 
720, 1277, 1415, and 1644 nm 

Thenkabail et al., (2004) 
495, 555, 655, 675, 705, 735, 885, 915, 985, 

1085, 1135, 1215, 1245, 1285, 1445, 1675, 

1725, 2005, 2035, 2235, 2295 and 2345 nm 

Thenkabail et.al., (2014)  

Thenkabail et al., (2002) 490, 520, 550, 575, 660, 675, 700, 720, 845, 

905, 920, 975 

Schmidt and Skidmore, (2003) 
404, 628, 771, 1398, 1803, and 2183 nm 

Table 3; a coparison of select band centers from crop characterization by different researchers. 

 

To reduce redundancy, various band reduction techniques have been developed e.g., through 

band selection using discriminant analysis, principle components analyisis, partial laest square 

regressions, least square means, correlation analysis . etc. Various researchers (Cochrane, 2000; 

Schmidt and Skidmore, 2001; Schmidt and Skidmore, 2003; Thenkabail et al., 2004; Vaiphasa et 

al., 2005) have used these methods to select informative bands and discriminate vegetaion 

species/types. Other ways include using feature selection, articicial neural networks , soil electric 

conductivity and cover canopy characteristics (Bajwa et.al., 2004). While they became 

successful in discriminating vegetation types or species using their own spectral data, they failed 

to come up with a comparable list of wavebands. 

During optimal band selection, important spectral regions do exist on the different parts of the 

spectral signature to represent vegetation parameters and can also be used to discriminate, model 

and characterize different crop characteristics (Sobhan, 2007).  

 

2.5 Crop Spectral reflectance 

Reflectance spectra patterns are defined by the reflective amount of light that is absorbed or 

reflected at different wavelengths by different target material, which depends on their 

biochemical and structural properties (Gonzalez et al., 2009). Spectra can vary at inter and intra 

species levels for crops due to factors such as to phenology, nutrient content, biophysical and 

biochemical properties, disease, light use efficiency, age differences, micro-climate, soil 

characteristics, precipitation, topography, phenology and a host of other environmental factors 

including stresses (Gausman, 1985; Smith et.al.,2004; Gracia and Ustin, 2001; Thenkabail et al., 

2015; Thenkabail et al., 2013; Marshall and Thenkabail (2015, 2014). 



 

Researchers have been able to discriminate and classify species based on their reflectance which 

is correlated to the molecular compositions such as chlorophyll, plant pigments, water and 

chemical compositions  which are represented in various reflectance regions(Sobhan, 2007; 

Dhumal et al., 2015) all which are caused by the structural or physiognomic characteristic and 

differences between the crops (Galvao, 2011). Developments in sensor technology i.e., from 

multi-spectral to hyperspectral offers improved accuracies of over 85% (Lobell and Asner, 2003; 

Pieterse, 2016; Lu, He and Dao, 2019) at spectral discrimination due to improved sensitivity to 

subtle changes in biophysical and biochemical properties (Lobell and Asner, 2003; Thenkabail, 

Enclona, Ashton and Meer, 2004; Mariotto et al., 2013; Koppe et al., 2016; Lu, He and Dao, 

2019). 

 

 

 

 

 

 

 

 

 

Fig; showing reflectance regions to discriminate crops using different crop characteristics Fig; 

showing reflectance regions to discriminate crops using different crop characteristics 

For all crops, bands in the visible region  are most optimal for crop species discrimination  with 

red as the most commonly occurring region for crop discrimination (e.g.,Galvao et.al., 2009; 



Mariotto et.al., 2013; Thenkabail et.al., 2004; )followed by   green and then blue (Mariotto et.al., 

2013; Verrelst et al., 2015). Other regions include the NIR and early SWIR regions (Manjunath 

and Ray, 2011). For each of these regions, chlorophyll strongly absorbs in blue and red regions 

while Structural variability is represented by the NIR region and water content in the Short  

infrared which  are  discriminating factor controlling leaf reflectance (Dhumal, Kale and 

Mehrotra, 2013; Dhumal et al., 2015).  

A quantitative comparison of reflectance spectra should be able to preserve more of this subtle 

but important spectral information thus carried out using matching or similarity techniques 

(Sobhan, 2007).  

 

2.3.1 Characteristics that influence spectral discrimination  

At species level, spectral variation between targets is subtle hence discrimination is made 

difficult (Abbasi, 2019; Mirzaei et al., 2019). Phenology, physiochemical characteristics, plant 

functional type (common response to certain environmental influences) are some of the factors 

that influence reflectance and absorption in crops ((Technology et al., 2003; Peña-barragán et al., 

2011; Nogueira et al., 2016; Hariharan et al., 2018). The selection of images is influenced by the 

mapping objective, climatic condition and technical issues for image interpretation (Xie, Sha and 

Yu, 2008). The performance of sensor at spectral variation in reflectance spectra is enhanced by 

its resolution and signal to noise ratio.  

It should be noted that high spectral resolution provides better accuracy compared to high spatial 

resolution (Galvao et.al, 2018). Alchanatis and Cohen highlighted importance of hyperspectral 

images with respect to their unique spectral bands, spatial attributes and image processing 

algorithms that show the added value mapping plant biophysical and biochemical properties of 

agricultural crops (Alchanatis and Cohen, 2011).also, hyperspectral sensors such as Hyperion 

can cover only limited areas and lack repeating cycles (Lobell and Asner, 2003; Lu, He and Dao, 

2019).  

In general, limitations to crop discrimination using remote sensing include i)effects of large soil 

background, ii) adaptions to environment (which makes reflectance of some plants different), 

iii)phenological changes due to climate iv) the possibility of non-linear mixing v) variations in 

chlorophyll, plant structure, succulence and pigments and vi) changes in land use and the relative 

impact of vascular tissue (Thenkabail, Enclona, Ashton and Meer, 2004; Pieterse, 2016).  

 

 

2.6 Techniques for crop discrimination using spectra and optimal band selection 

With no single best approach available, the optimal bands that best minimize correlation , high 

information and discriminate crops are determined using comprehensive analysis to provide 



complimentary and supplementary information i.e., i) principal component analysis (PCA), (ii) 

lambda–lambda R2 models (LL R2M), (iii) stepwise discriminant analysis (SDA) (Thenkabail, 

Enclona, Ashton, Legg, et al., 2004; Jain et al., 2007).  

2.6.1 Principal Component Analysis (PCA)  

This involves the establishing of prominent bands most prominent bands to capturing highest 

variance in targets and eliminate data redundancy by identifying and eliminating the least 

important bands (Mariotto et al., 2013). It involves a factor analysis in which a proportion of the 

total variability in the dataset explained by each  principal component established by its 

corresponding eigen value that indexes the bands’ factor loading/ weighting/eigen vector 

(Thenkabail, Enclona, Ashton, Legg, et al., 2004). It is a statistical technique to transform data 

into principal components such as to discriminate and identify redundant bands in relation to 

target data and is explored for each crop. 

Principle components are established using eigen values and eigen vectors 

It is easy to implement, interprete, good with numerical values and successful at identifying most 

important variables i.e. strong correlations and reduces overfitting. However, data 

standardization is a must before PCA such as to obtain optimal PC’s .  

2.6.2 Stepwise Discriminant Analysis (SDA) 

This involves stepwise selection of bands that best discriminate a combination of crops i.e., test 

strength of separability while discriminating a combination of species.  At each step, the variable 

that contributed most to the separability model is added and if one or more variables in the model 

fails to meet the retention criterion, the variable contributing the least is removed such that no 

other variables meet the criterion and the process stops.  

This is based on Wilks Lambda; a test statistic indicative if the discriminatory power of bands for 

a combination of crops.  Wilks Lambda provides overall accuracies and errors of omissions and 

commissions and involved a stepwise selection (Klecka, 1980) of wavebands from the image 

data sets with a values ranging from 0 -100 to determine the separability among multiple classes 

[35].  

2.6.3 Lambda-lambda R2 model 

This determines the correlation between all possible combinations of bands such as to identify 

redundant bands/ collinearity and is plotted on contour plots where λ1 by λ2 band matrices are 

generated. This helps determine areas rich/ unique information and areas of data redundancy.   

2.4 Comparison of the sensors for crop discrimination 

Previous studies have employed Hyperion to crop discrimination and achieved accuracies  >85% 

(e.g., (Thenkabail, Enclona, Ashton and Meer, 2004; Thenkabail, Enclona, Ashton, Legg, et al., 

2004; Mariotto et al., 2013; Thenkabail et al., 2013a; Aneece, 2018).  Studies prior to this have 

employed its use obtaining accuracies >60% (Lobell and Asner, 2003; Thenkabail, Enclona, 

Ashton, Legg, et al., 2004; Govender et al., 2008; Koppe et al., 2016). 



On the other hand, a few other studies found that hyperspectral data did not generate a 

considerably higher accuracy than multispectral data. Yang and Everitt [21] evaluated airborne 

hyperspectral images and multispectral images for detecting rangeland weed species and found 

that the hyperspectral images 

achieved only a slightly higher classification accuracy than multispectral images. Koppe et al. 

[22] compared performance of hyperspectral EO-1 Hyperion imagery and multispectral EO-1 

ALI data for estimating winter wheat properties (e.g., biomass, nitrogen concentration, and plant 

height) and concluded that the hyperspectral products yielded only slightly better results than the 

multispectral. These studies suggest that hyperspectral imagery does not always perform better 

than multispectral imagery for vegetation properties mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Methodology 

3.1 Data acquistion 

Remote sensing data were acquired over the study area, with concurrent ground reference data- 

of the pixels intersecting the ground data points were extracted from each satellite image/ Google 

Earth satellite image for each band using GIS. Data were collected to coincide with the 

Hyperion, OLI and EO-1 ALI image acquisitions and the peak of the dry season for study area. 

This data was collected for the crops every 1-3 days coincident – or maximum 1 day lapse with 

the dates of the satellite overpass. Hyperion, ETM+ and EO-1 ALI were checked for cloud cover 

below 10%.  

 

3.2 Image pre-processing 

1. Band selection  

Band selection hyperion- Hyperion imagery consists of 242 spectral bands from which calibrated 

and free of noise and atmospheric window effects bands are selected. For EO-1 ALI, ETM+ and 

OLI, only multi-spectral bands were selected. 

2. Atmospheric, geometric correction  and conversion to surface reflectance.  

As products subject to the same geometric correction procedures, L1T images acquired at 

different dates over the same path/row satisfy the spatial match required for time series analysis. 

In spite of this, image geometric co-registration was visually assessed by checking the spatial 

match of some randomly selected field boundaries within the study area across the time series. 

Atmospheric correction  and conversion to absolute surface reflectance from radiance was 

performed using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) tool in ENVI 4.8 (Exelis Visual Information Solutions), which incorporates the 

MODTRAN4 radiation transfer code (Berk et al., 1999; Thenkabail, Enclona, Ashton, Legg, et 

al., 2004; Thenkabail, Enclona, Ashton,& VanDerMeer, 2004; Thenkabail et al., 2002, 2011)  

using FLAASH tool.  

3.    Collection of ground spectra 

Reflectance spectra is collected from all images for different regions of interest. This is presented 

in tabular format to allow statistical analysis. Spectra is collected for each crop type and from 

each image with reference spectra collected from Google Earth Engine Image  

 

3.3 Data analysis 

All statistical analyses were performed using Statistical Analysis System (SAS Institute, 2009). 

The methods used to discriminate crop types and identify are discussed below. 

➢ Stepwise discriminant analysis approach for crop type discrimination (separability 

analysis);  

Stepwise discriminant analysis was performed using PROC STEPDISC procedure in SAS using 

Wilks Lambda statistic at  p < 0.0001; level of significance 0.999 to generate wavebands and 

their wilk’s lambda, a criterion/statistic to show variability.  The higher the Wilk's lambda, the 

lesser the separability between crop types (0 means 100% separability of crops).  At each step, 



the variable is tested against the f test. The values of Wilk’s lambda are indicative of separability 

i.e., the less the value of Wilk’s lambda, the greater spectral differentiation between the species 

types. Finally, the Wilk's lambda values are plotted against the number of bands to determine the 

number of bands sufficient to best separate the crops (when the curve becomes asymptotic or 

near-asymptotic) and their wavelength centers. This approach is used for Wilk's lambda tests for 

all sensor images.  

➢ Principal component analysis approach for crop type discrimination 

Principal component analysis (PCA) (Pearson, 1901) establishes prominent bands most 

important for capturing highest variance in data, and helps eliminate data redundancy. The PCA 

is explored for each crop separately to determine how best the characteristics of that crop are 

captured. The PCA was performed using the PRINCOMP procedure in SAS at 95% confidence . 

The relative contribution of each waveband to a PC is indexed by the band’s factor loading in the 

corresponding eigenvector which explains the variability in data explained by various PCAs, and 

the resulting eigenvectors associated with each band help determine the importance of the band 

(the higher the eigenvector, the greater the importance of the band). PCAs are applied to both 

HNBs and MBBs. 

➢ Correlation between narrow bands for determining optimal hyperion narrow bands 

(Contour plots of Hyperion bands) 

In this, the lambda (λ1) by Lambda (λ2) R2 models (LL R2M) is performed to provide a rigorous 

search criterion or data-mining technique to highlight redundant wavebands from wavebands 

with unique information content (where i, j = n wavebands). Lambda-by-lambda R2 contour 

plots of Hyperion bands (LLR2 PHBs) are obtained from the matrix of bivariate R2 values 

developed using PROC CORR algorithm of SAS. For each data set, the  R2 matrixes are 

calculated for each class (e.g., corn). We calculated R2 values only below or above the diagonal 

of the matrix, as values on either side of the diagonal were the transpose of one another. The 

lower the R2 value, the less redundancy between two wavebands i.e., two highly correlated 

wavebands indicate a redundancy in that they are providing similar information. Thus, lambda 

(k1)-vs.-lambda (k2) plotted areas with the least R2 values for two wavebands were the areas 

with the highest information content. The squared coefficients, R2, values were plotted in 

Lambda (λ1) by Lambda (λ2) plots to determine the HNB-centers and widths that provide the 

best and the redundant information. The correlation (r) values were converted to R2 and 

reported. 

The correlation analysis between the n narrowbands of Hyperion generates an n*n matrix values 

plotted against λ1–λ2 contour plots. The areas of high correlation (high R2 values, blank regions) 

between two wavebands signify band redundancy; thus, areas of lowest R2 are the most 

informative. The most informative bands are selected 

 

➢ Discriminant model and error matrices for determining optimal hyperspectral narrow 

bands  and validation 



To assess the sensors' accuracy in discriminating crop types, a linear discriminant function based 

on the pooled covariance matrix is performed using the discriminant analysis. The classification 

criterion is based on either the individual within-group covariance matrices or the pooled 

covariance matrix; it also accounts for the prior probabilities of the groups.  The hyperspectral 

band reflectivity data of the crop types are fed into the discriminant model. The input wavebands 

were the most frequently occurring wavebands resulting from the Wilk's lambda, PCA, and (λ1) 

by (λ2) plots of hyperspectral and data as discussed in previous sections. Each observation, from 

an independent dataset, was placed in the class from which it has the smallest generalized 

squared distance. DISCRM was also used to compute the posterior probability of an observation 

belonging to each class. This result in error matrices (Congalton & Green, 2009).  

Omission errors were calculated using data from Google Earth sentinel images as the ratio of 

false negatives to the total number of pixels belonging to a particular crop type. Commission 

errors were calculated as the ratio of the false positives to the total number of pixels belonging to 

a particular crop type. The overall classification accuracy was computed based on correctly 

classified pixels along the diagonal of an error matrix. and is calculated as: 

 
where n is the total number of validation pixels, nii is the number of pixels classified into crop 

type i (or diagonal agreement of the confusion matrix), and k is the number of crop types. 

The Khat was then computed so as to normalize the accuracy assessments between datasets and 

data types as follows: 

 
where r is the number of rows in the matrix; Xii is the number of observations in row i and 

column i; Xi + and X+I are the marginal totals of i and column i, respectively; and N is the total 

number of observations (Bishop et al., 1975). 

 The methodology above is summarized in the figure below. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 



4.Results and Analysis 

4.1 Stepwise discriminant analysis 

The ability to discriminate the crop types was examined using stepwise discriminant analysis. 

The degree of separability at (p<0.0001; 99% confidence level) among cotton, maize and 

sugarcane using narrow bands from Hyperion and broadbands from ALI and ETM+ is shown in 

figure 2. Of these 54 bands, 48% are in NIR, 33% in SWIR and 19% in VIS portion of the 

spectrum. ETM reaches a Wilks of 0.84094 with 4 non-thermal bands; ALI a wilks of 0.5728 

with 7 bands. This shows substantial intermix among crops. ETM+ centered around 565, 660, 

825 and ALI around 565, 660, 790, 1250, 1650, 2215.  

 

 

Figure 2; figure to show number of bands in from spectral discriminant analysis for the different 

images. 

 

4.2 Principal Component Analysis 

The purpose of PCA was to reduce redundancy by computing a set of wavebands that best 

explain the variability. Table 3 displays the PCAs of Hyperion, OLI and ETM+ across the 

different crops. 

  
 PCA 1 

(band 

center) 

PCA2 

(band 

center) 

PCA3 

(band 

center) 

PCA 4 

(band 

center) 

PCA 1 PCA 2 PCA3   

Hyperion         

cotton 1608 

1568 

1588 

1578 

1598 

875 

854 

824 

794 

885 

732 

722 

712 

742 

773 

437 

963 

1993 

953 

427 

66 25 3 

Maize 1558 

1608 

1638 

1679 

1992 

1064 

2083 

2153 

1982 

2204 

933 

2244 

943 

1488 

915 

1144 

67 12 4 

Variable Frequency 
  

Name Hyperion ETM+ OLI 

maize  29 17 19 

sugarcane 34 19 23 

cotton 29 15 14 

mix 15 12 13 



2335 2163 933 

Sugarcane  722 

712 

1720 

1709 

1679 

875 

854 

864 

834 

824 

427 

437 

468 

457 

712 

963 

2325 

2335 

2355 

48 16 11 

Table1. showing principal components for Hyperion with variability. 

 

 

The first PCA for Hyperion explains 66% of total variance in cotton fields, the second PCA 

explains 25%, up to the fifth explaining 1%. Two to five PCAs provide an accurate summary of 

the data, with two PCAs accounting for 90% of the total variance and five explaining 98%. The 

most important Hyperion HNBs involved with cotton PCA1 were 1608 nm, 1588 nm, 1568 nm, 

1578 nm, and 1598 nm (table 1). Overall, for cotton, PCA1 was determined by HNBs in the 

EMIR (1300–1900 nm) and the PCA2 by the NIR (760–900 nm) wavebands. For maize crops, 

the first two and first five PCAs explained 75% and 91% of variance, respectively, with the first 

PCA determined mostly by EMIR, and PCA2 by FMIR wavebands. The most important bands 

lie in the region 1588-1679nm.  

As in Hyperion, the wavebands dominating in PCA1s were located in the EMIR, and in PCA-2s 

in the NIR for the crops. Overall, across the crops, for Hyperion the first 2 PCAs explained about 

90% variability and were dominated by HNBs in EMIR (1300–1900 nm) and NIR (760–900 nm) 

with sprinkling of bands from other wavelengths. 

   

 

4.3 Correlation between bands 

The correlation for 176 bands resulted in 15400 values each. The λ1–λ2 contour plots of cotton 

for Hyperion are shown in Figures below. The areas of high correlation (high R2 values, blank 

regions) between two wavebands signify band redundancy; thus, areas of lowest R2 are the most 

informative. For wheat, the most informative bands of both Hyperion and spectroradiometer are 

located in the NIR and the visual portion of the spectrum followed by FMIR and EMIR. For 

cotton, the most common Hyperion bands are located across the entire spectrum, mostly in the 

red-edge and FNIR, and the most common spectroradiometer bands are located in the blue, red-

to- FNIR, and FMIR.  

 



Figure 3;showing Lambda -Lambda plots for a) cotton b) maize using a select of bands. 

 

Figure 4; Lambda vs lambda plot of cotton against mixture of crops using a) all 176 bands from 

Hyperion. B) a selection of bands form the 176 bands. 

 

4.4. Frequency of occurrence, classification accuracies, and selection of best bands 

Accuracy in discriminating crop types was examined by discriminant analysis using the most 

frequently occurring wavebands resulting from the LS-means, Wilk's lambda, PCA, and lambda–

lambda correlation matrix for the hyperspectral sensors, and LS-means and Wilk's lambda for the 

multispectral sensors. The ranking of the best bands was used as input bands for classifying the 

crop types. When bands ranked within the same group (e.g. 680 nm and 690 nm) contained 

redundant information, only one band was selected as input. Such an approach helps in 

overcoming the Hughes' phenomenon (Thenkabail et al., 2011).  

a 

 

b 

 

mix  mix  



Based on this approach, the best 3, 5, 10, 15, and 25 Hyperion bands were selected ( table 5). An 

overall accuracy of 90.2%was achieved using 25 narrow bands in classifying cotton, maize, and 

mix of crops.  

 

When comparing the crop types, the best accuracy classification was found for alfalfa and maize 

(100%), followed by cotton (97.7%), sugarcane (95.6%), and least mix (30%). The largest error 

occurred for mix pixels misclassified as wheat with an omission error of 70%, probably due to 

water background reflection. In contrast, the overall accuracy of MBBs in crop type 

discrimination is lower than narrowbands even when using all the bands and for two crops only 

(cotton and wheat), as in the case of IRS (overall accuracy = 92.6%). Comparing the accuracy in 

discriminating the same three crops – cotton, maize, and wheat – between the multispectral ALI 

and IKONOS and hyperspectral Hyperion, the latter outperformed with only 12 bands (overall 

accuracy = 86%). ALI reached a maximum accuracy of 83.9% and 76.8% respectively using 9 

and 4 bands respectively. The overall accuracy of the 6 non-thermal ETM+ bands was 54.3% in 

discriminating four crop types (cotton, maize, sugarcane, and mix), poor compared to the 

spectroradiometer which, with only one band centered at 432 nm.. However, it is important to 

note that it is possible to achieve over 90% classification accuracies using HNBs even when a 

greater number of crop types is involved, as illustrated for 5 crops using spectroradiometer data 

(Table 7). ForMBBs the classification accuracies decrease swiftly with greater number of crop 

types. 



 

 

A list of hyperion optimal bands 

 NIR, FMIR - 885,943,2143 81.1 

blue, red, NIR, FMIR - 447,651,885,943,21443 82.3 

VIS, Red edge, NIR, MIR - 447,579,651,681,722,803,885,943,2143 83.5 

VIS, Red edge, NIR, FNIR, EMIR, FMIR -447, 579, 651, 681, 722, 803, 885, 943, 1084, 1134, 

1488, 2143 86 

VIS, Red edge, NIR, FNIR, EMIR, FMIR-

447,579,651,681,722,803,885,943,1084,1134,1488,1528,1982,2123,2143 87.2 

VIS, Red edge, NIR, MSNIR, FNIR, EMIR, FMIR-  

447,508,579,651,681,722,803,885,933,943,953,963,983,1064,1084,1094, 

1124,1134,1144,1195,1205,1488,1528,1982,2123,2143,2264,2274 

 

 

 

 

 

 

 

 

 

 



5.0 Conclusion and Recommendations 

This study clearly identified the important as well as the redundant wavebands through: (1) 

principal component analysis and (2) very rigorous λ1 (400–2500 nm) by λ2 (400–2500 nm) 

contour plots involving 12,403 unique HVI model derived R-square values for each variable of 

each crop. These findings make significant contribution to data mining and in overcoming the 

Hughes' phenomenon. This is very valuable for future generations of satellites, such as the 

Hyperion mission, which could either gather data from hundreds of hyperspectral narrowbands 

like Hyperion, from which users will have to extract appropriate optimal wavebands relevant for 

their application (e.g., based on methods espoused in this paper), or, as an alternative, they could 

carry specialized optimal sensors with selective wavebands (e.g., as reported for Hyperion ., 

focusing to gather data for targeted applications such as agriculture or vegetation. This will 

reduce data volume and optimize time and resources in image pre-processing, analysis, and 

interpretation. 
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