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Abstract

Bone fractures are a leading cause of morbidity and mortality worldwide.
In Uganda, statistics for the prevalence of bone fractures are unknown, al-
though anecdotal evidence points to a high incidence, mostly arising out of
tra�c accidents and falls. The situation becomes worse year on year due to a
rising life expectancy, and thus an increasing number of the aging population
who are more prone to fractures. To reduce the debilitating e↵ects of these
fractures and improve quality of life, it is important that the fractures are
accurately diagnosed early on. X-ray imaging is the most common imaging
modality for fracture diagnosis in Uganda, but its manual interpretation is
usually error-prone, potentially leading to missed diagnoses. To address this
challenge, this project aimed at developing an automated bone fracture de-
tection system for the e�cient diagnosis, utilizing a deep learning approach.
Images of fractured bones were obtained from Roboflow and the open-source
dataset. We developed a model for localization of the bone fractures, utilizing
the YOLOv5 architecture. Our best model achieved a mean average precision
of 85.6%. Comparison with alternative approaches such as E�cientDet, and
Detectron2 reveals the superior performance of our model. Our model, when
integrated into a clinical decision support system, is potentially a promising
approach to improve clinical outcomes based on accurate and e�cient bone
fracture detection from x-ray data.
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Chapter 1

Introduction

1.1 Project Background

A bone fracture is a break or a crack in the bone. The main cause of bone
fractures in Uganda is road tra�c accidents. Other causes include; falls,
repetitive motions, trauma, or direct blow to the body.[1]
Radiology is a vital health diagnostic tool, giving essential information for
routine injury and disease prevention and evaluation. It uses a variety of
imaging modalities, each with its own set of physical principles and levels of
complexity.
Medical imaging is very important in bone fracture diagnosis since the naked
eye cannot view the human body to determine the severity of the fracture.
And di↵erent medical imaging techniques include:

• x-ray

• Magnetic Resonance Imaging

• Ultrasound

• Computer Tomography (CT) scans

However, in Uganda, the X-ray is one of the most commonly used, fast,
and easily accessible diagnostic imaging tests. They’re a type of radiation,
where an X-ray beam is passed through the body where a portion of the
X-rays are either absorbed or scattered by the internal structures, and the
remaining X-ray pattern is transmitted to a detector (e.g., film or a computer
screen) for recording or further processing by a computer.[2]
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Radiologists in Uganda use their naked eyes to identify the anatomical
bone and also look for fractures in x-ray images. As a result of user-dependent
variation, this can result in missing some fractures, and misinterpretation of
X-ray images, hence leading to ine↵ective patient management.[3]

To address limitations associated with human interpretation of medical im-
ages, AI has become popular. Artificial Intelligence (AI) is the replication
of human intellect in machines that are programmed to think and act like
humans. AI has an influence on almost every element of modern life, includ-
ing entertainment, economics, and healthcare. The modern applications of
AI within the healthcare industry include image processing disease analysis
and diagnosis, development of drugs, patient monitoring, and surgery. These
applications enable quick, cheaper, and reliable diagnosis health treatment,
resulting in improved quality of life.
Machine learning is a form of AI that performs autonomous predictions by
using algorithms that iteratively improve, or learn, in response to training
data.[4]
Deep learning has proved successful in medical imaging, a sub-field of ma-
chine learning dealing with algorithms inspired by the structure and function
of the brain called artificial neural networks. In other words, It mirrors the
functioning of our brains. An example is to detect disease or abnormalities
from X-ray images and classify them into several disease types or severity in
radiology. While existing works focus on the classification of fractures this
project focuses on bone fracture detection in x-ray images using deep learn-
ing. [4]
There has been recent work in bone fracture detection, a study led by author
Rachel Kuo, from the Botnar Research Centre, Nu�eld Department of Or-
thopaedics, Rheumatology and Musculoskeletal Sciences in Oxford, England.
This proposed that AI can reduce the rate of early misdiagnosis in challeng-
ing circumstances in the emergency setting, including cases where patients
may sustain multiple fractures. It has potential as an educational tool for
junior clinicians. “It could also be helpful as a ‘second reader,’ providing
clinicians with either reassurance that they have made the correct diagnosis
or prompting them to take another look at the imaging before treating pa-
tients. [5]
Yang ling Ma and Yixin Lou proposed Bone fracture detection through the
two-stage system of a Crack-Sensitive Convolutional Neural Network. In
their paper, there proposed a new two-stage system to detect fractures.
Firstly, there used a Faster Region with a Convolutional Neutral Network
(Faster R-CNN) to detect 20 di↵erent types of bone regions in X-ray images,
and then there recognized whether each bone region is fractured by using
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a Crack-Net. The Faster R-CNN and crack-sensitive CNN were tested on
small data set which limits the learning of the model.[6]

Thian Yee Liang, Li Yiting, and Jagmohan Pooja proposed Convolutional
Neural Networks for Automated Fracture Detection and Localization on
Wrist Radio-graphs. The purpose of their model was to demonstrate the
feasibility and performance of an object detection convolutional neural net-
work (CNN) for fracture detection and localization on wrist radio-graphs.
But however, their system had some drawbacks like radius and ulna frac-
tures and did not evaluate all potential fractures on a wrist radio-graph,
such as carpal or metacarpal fractures, therefore there is uncertainty if the
model would be able to perform adequately if there are limited training ex-
amples of certain classes. [7]

Hardalaç Firat, Faith Uysal, Ozan Peker, and Murat Ciceklidag proposed
a Fracture Detection system in Wrist X-ray Images Using Deep Learning-
Based Object Detection Models. The aim of their study was to perform
fracture detection by use of deep-learning on wrist X-ray images to support
physicians in the diagnosis of these fractures, particularly in the emergency
service. After five di↵erent ensemble models were developed and then used to
reform an ensemble model to develop a unique detection model, however, the
system had some drawbacks which included Fracture labeling in other small
bones ie (trapezoid, trapezium, scaphoid, capitate, hamate, triquetrum, pisi-
form, lunate) fractures in the Wrist were not studied and were ignored. [8]

Bin Guana,Guoshan Zhanga, Jinkun Yao, and Mengxuan Wang proposed
an Arm fracture detection system in X-rays based on an improved deep con-
volutional neural network. This paper has three main which include three as-
pects. First, a new backbone network is established based on feature pyramid
architecture to gain more fractural information. Second, an image prepro-
cessing procedure including opening operation and pixel value transformation
is developed to enhance the contrast of original images. Third, the receptive
field adjustment containing anchor scale reduction and tiny ROIs expansion
is exploited to find more fractures. However, this has a drawback of using
the mura data-set images which are of low quality hence getting an average
precision of 62.04% which is quite low. [9]

3



1.2 Problem Statement

A deep learning object detection system with localising capabilities, better
accuracy in terms of mean average precision to solve the challenges in the
current state of the art AI models like low mean average precision and also
find application in developing a computer aided diagnosis system in a clinical
setting to help solve observer variability among radiologists due to di↵erences
in knowledge and experience to reduce early misdiagnosis in an emergency
setting.

1.3 Justification

In 2019 ministry of Health records indicate that Uganda had only 48 radi-
ologists meant to serve almost 40 million Ugandans. This meant that one
radiologist had to handle over 850,000 people with di↵erent complexities in-
cluding bone fracture complications. Thus to save radiologists’ time, improve
e�ciency, and as well reduce their workload upon them, an automatic bone
detection system is required.

1.4 Project Objectives

Main Objectives

• To develop an artificial intelligence-guided system that performs auto-
matic bone fracture detection in X-ray images.

Specific Objective

• To collect and curate a suitable open source data-sets for fractures in
chest x-ray images.

• To develop a model for fracture detection.

• To integrate both models in a decision support system for automatic
fracture detection.
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1.5 Project Scope

This project is aimed at developing an automatic bone fracture detection
system using deep learning object detection that will be deployed on a web
based application using the Django frame work.

1.6 Summary of Report

1.6.1 Project Title

Deep learning was the form of machine learning used in detection of fractures
in xray images.

1.6.2 Abstract

In this we looked at fractures being the major cause of mortality and to
reduce the debilitating e↵ects of these fractures an automated bone fracture
detection system in x-ray images were needed.

1.6.3 Introduction

• In the background we explicitly highlight the di�culty in bone fracture
recognition in x-ray images looking at the anatomical regions where
fractures are di�cult to detect then introducing deep learning as a
solution and also reviewing various papers related to the use of deep
learning in x-ray bone fracture detection while giving their limitations.

• In the Problem Statement we looked at the challenges in the current
AI models in regard to performance and clinical application.

• In the Justification we looked at the radiologists to patient ratio in
Uganda giving an automatic bone fracture detection system as the
solution.

• In the Project Objectives we give a description of our major goal of the
project.

• In the scope we give the entire coverage of our project
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1.6.4 Literature Review

In this section, we give a description of bone fractures in terms of types,
and incidence severity and also look at the image-based diagnosis of bone
fractures then lastly review related literature to our project.

1.6.5 Methodology

In this section, we describe in detail the entire processing of development,
training, and deployment of the deep learning model for the detection of
fractures in x-ray images. The process involved the use of di↵erent tools
and software such as Anaconda, and Google co-lab among others as will be
elaborated.

1.6.6 Results and Discussion

In this section we look at the results we obtained after model training and
deployment using qualitative and quantitative analysis.

1.6.7 Conclusions, Challenges and Recommendations

In this section, we give where our developed system can be applied through
conclusion, the various challenges encountered during the project, and how
our project can be improved in future works.
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Chapter 2

Literature Review

2.1 Introduction

This chapter looks at the types of bone fractures, incidence, imaging diag-
nostics, and di↵erent research papers relating to our project.

2.2 Bone Fractures

A bone fracture is a medical definition of a broken bone. Fractures are
usually caused by traumas like falls, car accidents, or sports injuries. But
some medical conditions and repetitive forces (like running) can increase your
risk of experiencing certain types of fractures. A bone fracture happens when
something hits your bone with enough force not only to damage it but to
break it in at least one place. Fractures are more serious injuries and can
take much longer to heal.

7



Figure 2.1: Bone Fracture X-ray Image

2.2.1 Types of Bone Fractures

Bone fractures are categorized into types according to the following criteria
i.e. pattern, cause and body part. The following are the common types of
bone fractures which include.

• Stable Fracture. The broken ends of the bone line up and are barely
out of place.

• Open (compound) Fracture. The skin may be pierced by the bone or
by a blow that breaks the skin at the time of the fracture. The bone
may or may not be visible in the wound.
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• Transverse Fracture. This type of fracture has a horizontal fracture
line.

• Oblique fracture. This type of fracture has an angled pattern.

• Com-minuted Fracture. In this type of fracture, the bone shatters into
three or more pieces.

• Spiral Fracture: one part of the bone has been twisted at the breaking
point.

• Com-minuted Fracture: the bone breaks into several pieces.

• Green-stick Fracture: an incomplete fracture in which the bone is bent;
occurs most often in children.

Figure 2.2: Types of Bone Fractures

[10]

2.2.2 Severity of Bone Fractures

The severity of a fracture usually depends on the force that caused the break.
If the bone’s breaking point has been exceeded only slightly, the bone may
crack rather than break all the way through. If the force is extreme, such
as that caused by an automobile crash or gunshot, the bone may shatter.
Serious fractures can have dangerous complications if not treated promptly;
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possible complications include damage to blood vessels or nerves and infec-
tion of the bone (osteomyelitis) or surrounding tissue. Recuperation time
varies depending on the age and health of the patient and the type of frac-
ture. A minor fracture in a child may heal within a few weeks; a serious
fracture in an older person may take months to heal.

2.2.3 Incidence of Bone Fractures

Incidence refers to the proportion or rate of persons who develop a condition
during a particular time period. A study by Nienke P Dosa in a New-York
referral hospital found that Two hundred twenty-one consecutive patients
aged 2–58 years were evaluated in 2003 at a regional referral center. Twenty
percent were children aged 2–10 years; 30% were adolescents aged 11–18
years, and 50% were adults aged 19– 58 years. The annual incidence of
fractures among children, adolescents, and adults was 23/1000; 29/1000; and
18/1000, respectively. The crude fracture rate was 9/1000 per patient-year.
Five fractures were reported during the study year, Most fractures involved
the tibia and femur. Fractures were more common in children than adults.
The median age at first fracture was 11 years, though were also present
in adults, and in adults, there were typically attributed to accidental falls
(commonly in the bathroom) or during exercise.
[11]

According to a study by Isaac Kajja in Entebbe Hospital, it was estab-
lished that from 1st November 2014 to 28th February 2015 with a sample
space of 101 patients included 72 (71.3%) males and 29 (28.7%) females with
ages ranging from three to 79 years. Injuries were mainly caused by road
tra�c accidents a↵ecting 36 (35.6%) patients. 95 (95.0%) patients presented
with fractures (91 as fractures alone and four as fractures with a dislocation)
while six (6.0%) presented with dislocations (three lower limb and three up-
per limb dislocations). The majority of patients ( 78.95%) with fractures
had simple fractures. Up to 94 out of the 95 patients had limb fractures – 52
upper limbs and 42 lower limbs. Only one spine fracture was recruited. [12]

2.3 Image-based Diagnosis of Bone Fractures

Diagnostic imaging techniques help narrow the causes of an injury or illness
and ensure that the diagnosis is accurate. These techniques include x-rays,
computed tomography (CT) scans, and magnetic resonance imaging (MRI).
These imaging tools let your doctor ”see” inside your body to get a ”picture”
of your bones, organs, muscles, tendons, nerves, and cartilage. This is a way
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the doctor can determine if there are any abnormalities.

• X-rays (radio-graphs) are the most common and widely available di-
agnostic imaging technique. Even if you also need more sophisticated
tests, you will probably get an x-ray first. The level of radiation ex-
posure from x-rays is not harmful, but your doctor will take special
precautions if you are pregnant. Bones, calcifications, some tumors,
and other dense matter appear white or light because they absorb the
radiation. Less dense soft tissues and breaks in bones let radiation pass
through, making these parts look darker on the x-ray film. Most times
patients will probably be x-ray-ed from several angles. If you have
a fracture in one limb, your doctor may want a comparison x-ray of
your uninjured limb. X-rays may not show as much detail as an image
produced with more sophisticated techniques. They are, however, the
most common imaging tool used to evaluate an orthopedic problem
and are readily available in most doctors’ o�ces.
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Figure 2.3: An X-ray Bone Image
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• Computed Tomography (CT) is an imaging tool that combines x-rays
with computer technology to produce a more detailed, cross-sectional
image of your body. A CT scan lets your doctor see the size, shape, and
position of structures that are deep inside your body, such as organs,
tissues, or tumors. You may need a CT scan if you have a problem with
a small, bony structure or if you have severe trauma to the brain, spinal
cord, chest, abdomen, or pelvis. Sometimes, you may be given a dye or
contrast material to make certain parts of your body show up better.
A CT scan costs more and takes more time than a regular x-ray. It can
be done in either a hospital setting or an outpatient imaging center.

Figure 2.4: CT Scan Image

• Magnetic Resonance Imaging (MRI) is another diagnostic imaging tech-
nique that produces cross-sectional images of your body. Unlike CT
scans, MRI works without radiation. The MRI tool uses magnetic
fields and a sophisticated computer to take high-resolution pictures of
your bones and soft tissues. The MRI creates a magnetic field around
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you and then pulses radio waves to the area of your body to be pictured.
The radio waves cause your tissues to resonate. A computer records
the rate at which your body’s various parts (tendons, ligaments, nerves,
etc.) give o↵ these vibrations, and translates the data into a detailed,
two-dimensional picture. An MRI may be used to help diagnose torn
knee ligaments and cartilage, torn rota-tor cu↵s, herniated disks, os-
teonecrosis, bone tumors, and other problems.

Figure 2.5: MRI Image

• Other Imaging Studies include Ultrasound uses high-frequency sound
waves that echo o↵ the body. It is painless and noninvasive and does not
require radiation A bone scan which uses a small amount of radioactive
material to identify areas of increased bone activity.

[9]

2.4 Deep Learning

Deep learning can be considered a subset of machine learning. It is a field
that is based on learning and improving on its own by examining computer
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algorithms.
Deep learning works with artificial neural networks, which are designed to
imitate how humans think and learn.

Figure 2.6: Artificial Neural Network

2.4.1 Types of Deep learning Algorithms

• Convolutional Neural Networks (CNNs) CNN’s, also known as Con-
vNets, consist of multiple layers and are mainly used for image pro-
cessing and object detection. Yann LeCun developed the first CNN in
1988 when it was called LeNet. It was used for recognizing characters
like ZIP codes and digits.
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CNN’s have multiple layers that process and extract features from data.
The CNN has the following layers

– Convolution Layer. CNN has a convolution layer that has several
filters to perform the convolution operation.

– Rectified Linear Unit (Re-LU) CNN’s have a Re-LU layer to per-
form operations on elements. The output is a rectified feature
map.

– Pooling Layer

∗ The rectified feature map next feeds into a pooling layer.
Pooling is a down-sampling operation that reduces the di-
mensions of the feature map.

∗ The pooling layer then converts the resulting two-dimensional
arrays from the pooled feature map into a single, long, con-
tinuous, linear vector by flattening it.

– Fully Connected Layer A fully connected layer forms when the
flattened matrix from the pooling layer is fed as an input, which
classifies and identifies the images.

Figure 2.7: Image Processing in a CNN

• Long Short Term Memory Networks (LSTMs) LSTMs are a type of
Recurrent Neural Network (RNN) that can learn and memorize long-
term dependencies. Recalling past information for long periods is the
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default behavior.

How does the LSTMS work?

– First, they forget irrelevant parts of the previous state.

– Next, they selectively update the cell-state values.

– Finally, the output of certain parts of the cell state.

Figure 2.8: LSTM Operation

• Recurrent Neural Networks (RNNs) RNN has connections that form
directed cycles, which allow the outputs from the LSTM to be fed as
inputs to the current phase.

The output from the LSTM becomes an input to the current phase
and can memorize previous inputs due to its internal memory. RNNs
are commonly used for image captioning, time-series analysis, natural
language processing, handwriting recognition, and machine translation.
How do RNNS work

– The output at time t-1 feeds into the input at time t.

– Similarly, the output at time t feeds into the input at time t+1.

– RNNs can process inputs of any length.
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– The computation accounts for historical information, and the model
size does not increase with the input size.
An unfolded RNN looks like this:

Figure 2.9: Unfolded RNN

• Generative Adversarial Networks (GANs)
are generative deep learning algorithms that create new data instances
that resemble the training data. GAN has two components: a gener-
ator, which learns to generate fake data, and a discriminator, which
learns from that false information.

How Do GANs work?

– The discriminator learns to distinguish between the generator’s
fake data and the real sample data.

– During the initial training, the generator produces fake data, and
the discriminator quickly learns to tell that it’s false.

– The GAN sends the results to the generator and the discriminator
to update the model.
Below is a diagram of how GANs operate
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Figure 2.10: Operation of the GAN

• Radial Basis Function Networks (RBFNs)
RBFNs are special types of feed-forward neural networks that use radial
basis functions as activation functions. They have an input layer, a
hidden layer, and an output layer and are mostly used for classification,
regression, and time-series prediction.
How Do RBFNs Work?

– RBFNs perform classification by measuring the input’s similarity
to examples from the training set.

– RBFNs have an input vector that feeds to the input layer. They
have a layer of RBF neurons.

– The function finds the weighted sum of the inputs, and the output
layer has one node per category or class of data.

– The neurons in the hidden layer contain the Gaussian transfer
functions, which have outputs that are inversely proportional to
the distance from the neuron’s center.

– The network’s output is a linear combination of the input’s radial-
basis functions and the neuron’s parameters.
example of an RBFN://
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Figure 2.11: Illustration of RBFN

• Multi-layer Perceptrons (MLPs)
MLPS is an excellent place to start learning about deep learning tech-
nology.
MLPs belong to the class of feed-forward neural networks with multiple
layers of perceptrons that have activation functions.
MLPs consist of an input layer and an output layer that is fully con-
nected. They have the same number of input and output layers but may
have multiple hidden layers and can be used to build speech-recognition,
image-recognition, and machine-translation software.
How do the MLPs work

– MLPs feed the data to the input layer of the network. The layers
of neurons connect in a graph so that the signal passes in one di-
rection.

– MLPs compute the input with the weights that exist between the
input layer and the hidden layers.

– MLPs use activation functions to determine which nodes to fire.
Activation functions include ReLUs, sigmoid functions, and tanh.

– MLPs train the model to understand the correlation and learn
the dependencies between the independent and the target vari-
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ables from a training data set.
Below is a diagram of MLP

Figure 2.12: Illustration of MLPs

• Self Organizing Maps (SOMs)
Professor Teuvo Kohonen invented SOMs, which enable data visualiza-
tion to reduce the dimensions of data through self-organizing artificial
neural networks.

Data visualization attempts to solve the problem that humans cannot
easily visualize high-dimensional data. SOMs are created to help users
understand this high-dimensional information.
How Do SOMs Work?

– SOMs initialize weights for each node and choose a vector at ran-
dom from the training data.

– SOMs examine every node to find which weights are the most
likely input vector. The winning node is called the Best Matching
Unit (BMU).

– SOMs discover the BMU’s neighborhood, and the amount of neigh-
bors lessens over time.

– SOMs award a winning weight to the sample vector. The closer a
node is to a BMU, the more its weight changes
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– The further the neighbor is from the BMU, the less it learns.
SOMs repeat step two for N iterations
Below is a block diagram of a SOM

Figure 2.13: Illustration of MLPs
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• Deep Belief Networks (DBNS)

DBNs are generative models that consist of multiple layers of stochas-
tic, latent variables. The latent variables have binary values and are
often called hidden units.

DBNs are a stack of Boltzmann Machines with connections between the
layers, and each RBM layer communicates with both the previous and
subsequent layers. Deep Belief Networks (DBNs) are used for image
recognition, video recognition, and motion-capture data.
How Do DBNs Work?

– Greedy learning algorithms train DBNs. The greedy learning al-
gorithm uses a layer-by-layer approach for learning the top-down,
generative weights.//

– DBNs run the steps of Gibbs sampling on the top two hidden
layers. This stage draws a sample from the RBM defined by the
top two hidden layers.//

– DBNs draw a sample from the visible units using a single pass of
ancestral sampling through the rest of the model.//

– DBNs learn that the values of the latent variables in every layer
can be inferred by a single, bottom-up pass.
block diagram of DBN.

Figure 2.14: Illustration of DBN

• Restricted Boltzmann Machines (RBMs) Developed by Geo↵rey Hin-
ton, RBMs are stochastic neural networks that can learn from a prob-
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ability distribution over a set of inputs.

This deep learning algorithm is used for dimensional reduction, classi-
fication, regression, collaborative filtering, feature learning, and topic
modeling. RBMs constitute the building blocks of DBNs.
RBN has two layers which include visible units and hidden units.
Mode of operation of RBN.

– RBMs accepts the inputs and translate them into a set of numbers
that encodes the inputs in the forward pass.

– RBMs combine every input with individual weight and one overall
bias.

– In the backward pass, RBMs take that set of numbers and trans-
late them to form the reconstructed inputs.

– RBMs combine each activation with individual weight and overall
bias and pass the output to the visible layer for reconstruction.

– At the visible layer, the RBM compares the reconstruction with
the original input to analyze the quality of the result.
Block diagram RBM.
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Figure 2.15: Illustration of RBMs

• Auto-encoders Auto-encoders are a specific type of feed-forward neural
network in which the input and output are identical.
Geo↵rey Hinton designed auto-encoders in the 1980s to solve unsu-
pervised learning problems. They are trained neural networks that
replicate the data from the input layer to the output layer.
Auto-encoders are used for purposes such as pharmaceutical discovery,
popularity prediction, and image processing.
Mode of operation Auto-encoder.

– Auto-encoders are structured to receive an input and transform it
into a di↵erent representation. They then attempt to reconstruct
the original input as accurately as possible.

– When an image of a digit is not clearly visible, it feeds to an auto-
encoder neural network.

– Auto-encoders first encode the image, then reduce the size of the
input into a smaller representation.

– Finally, the auto-encoder decodes the image to generate the re-
constructed image.
Block diagram of Auto-Encoder
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Figure 2.16: Illustration of Auto-encoders

[13]
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2.5 Applications of Deep Learning to Bone
Fracture.

• Applications in Diagnosis Screening osteoporosis. In the era of AI,
many researchers have focused their attention on developing practical
screening tools for osteoporosis. Easier-to-use and accurate diagnostic
tools may improve the prognosis of individuals at high risk of frac-
tures by earlier intervention and aid the e↵ective use of public health
resources for individuals at low risk. Taken together, increasing at-
tempts have been made to diagnose osteoporosis using various data
sources and ML methods, and performance has improved over time,
especially when using images with CNN methods.
Screening fractures. Many studies have reported the application of
ML in fracture detection and some of them have become the basis of
commercially available programs—such as OsteoDetect (Imagen Tech-
nologies, New York, NY, USA; 2018. Several earlier studies used X-ray
images to detect fractures, and studies using CT images to detect frac-
tures have been increasing recently. As the basis for the OsteoDetect
program, Lindsey et al, used wrist radio-graphs to detect wrist fractures
using a CNN and showed performances in AUROC of 0.96 and 0.97 in
two internal test data-sets. Also, they showed that when aided with
the program, the misinterpretation rate of the average clinician was
significantly reduced by 47.0% Another interesting study conducted by
Badgeley et al reported that imaging features from hip X-rays could be
used to discriminate fractures using a CNN (AUROC of 0.78) and that
patient data with hospital process variables, such as scanner model,
scanner manufacturer, and order date showed better performance for
fracture detection (AUROC of 0.91) than images. In a subgroup anal-
ysis of selected radio graphs matched with patient data and hospital
process variables, X-rays could not detect hip fractures [45]. This result
implied that the model detected fractures indirectly through the asso-
ciated clinical variables rather than directly utilizing the image features
of the fracture.

• Applications in Risk Prediction. As in other fields of medical research,
accurate prediction of musculoskeletal outcomes enables an individu-
alized approach for initiating and monitoring treatments.n terms of
predicting fracture, most studies used a database to build prediction
models. In men, Su et al, reported that the classification of a high-risk
group for hip fractures using a classic ML method of classification and
regression trees showed a discrimination power similar to that of FR-

27



AX.ML could be used to build prediction models and identify novel
risk factors. Based on claims data of more than 280,000 individuals,
Engels et al. [55] developed a hip fracture prediction model with an
AUROC of 0.65 to 0.70 using a super-learner algorithm that considered
both regression and ML algorithms, such as support vector machines
and RUSBoost.
Moreover, considering the sequential characteristics of electronic health
records, Almog et al, developed a short-term incident fracture predic-
tion model based on natural language processing methods. These find-
ings indicate the possibility of using the unique medical history data
of the patients over time to predict the risk of fractures. Contrarily,
studies using unsupervised learning to identify fractures were also con-
ducted. Kruse et al, found nine di↵erent fracture risk clusters based on
BMD, clinical risk factors, and medications using simple unsupervised
hierarchical agglomerative clustering analysis.
With regard to predicting outcomes other than fracture, few studies
have attempted to predict bone loss and falls. The rate of bone loss
over 10 years could be predicted better with the artificial neural network
than with multiple regression analysis using conventional parameters,
such as age, body mass index, menopause, fat and lean body mass, and
BMD values [60]. Falls were also accurately predicted using XGBoost,
reporting the following top predictors: cognitive disorders, abnormal-
ities of gait and balance, and Parkinson’s disease. The most common
problem encountered in learning tasks is a class imbalance because of
the low incidence of positive events.

• Future Applications. Overall, many studies have consistently shown
that ML models can detect fractures better than clinicians, expanding
the limits of human performance. Recently, FDA and the Korean FDA
and approved some fracture detection algorithms to support clinicians,
which makes AI-guided tools within reach. However, AI models ex-
ceedingly better than conventional models have not been suggested for
the task of predicting fractures. One of the main reasons for the phe-
nomenon could be that the conventional models are well-designed and
already have excellent performances in fracture risk prediction, which
leaves small room for improvement. Therefore, more AI models con-
joining images of bone and muscle with clinical information are needed
in the near future. It could be considered in designing the models
whether input images can provide high-quality information to predict
fractures, as there is a significant di↵erence in the quality and amount
of included information included depending on the image type.
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In this era of the overwhelming volume of medical data, AI is a promis-
ing tool that may shed light on an individualized approach and a better
understanding of the disease in the field of bone and mineral research.
The present review aimed to provide an overview of the latest studies
using ML to address the issues in the field, focusing on osteoporosis
and fragility fractures. ML models for diagnosing and classifying os-
teoporosis and detecting fractures from images have shown promising
performance and have improved over time. Fracture risk prediction is
another promising field of research, and studies are being conducted
using various data sources.

2.6 Training and validation

Deep learning training is when a deep neural network (DNN) “learns” how
to analyze a predetermined set of data and make predictions about what
it means. It involves a lot of trial and error until the network is able to
accurately draw conclusions based on the desired outcome.
Validation in deep learning is a process where a trained model is assessed
with a testing data set. Training and validation intend to locate an ideal
model with the best execution.
[13]

2.6.1 Testing and Evaluation

Testing in deep learning refers to the process where the performance of a
fully trained model is evaluated on a testing set. The testing set consisting
of a set of testing samples should be separated from the both training and
validation sets.
[13] Inference: is the process of using a trained dense neural network model
to make predictions against previously unseen data,

2.6.2 Parameters and Hyper Parameters

In ML/DL, a model is defined or represented by the model parameters. How-
ever, the process of training a model involves choosing the optimal hyper-
parameters that the learning algorithm will use to learn the optimal pa-
rameters that correctly map the input features (independent variables) to
the labels or targets (dependent variable) such that you achieve some form
of intelligence. Hyper-parameters are parameters whose values control the
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learning process and determine the values of model parameters that a learn-
ing algorithm ends up learning. Hyper-parameters are used by the learning
algorithm when it is learning but they are not part of the resulting model
Examples of hyper-parameters include

• Train-Test split ratio

• Learning rate in optimization algorithms (e.g. gradient descent)

• Choice of optimization algorithm (e.g., gradient descent, stochastic gra-
dient descent, or Adam optimizer)

• Choice of activation function in a neural network (nn) layer (e.g. Sig-
moid, Re-LU, Tanh)

• The choice of cost or loss function the model will use

• Number of hidden layers in a nn

• Number of activation units in each layer

• The drop-out rate in nn (dropout probability)

• Number of iterations (epochs) in training a nn

• Number of clusters in a clustering task

• Kernel or filter size in convolutional layers

• Pooling size

• Batch size

[13] Parameters on the other hand are internal to the model. That is, they
are learned or estimated purely from the data during training as the algo-
rithm used tries to learn the mapping between the input features and the
labels or targets. At the end of the learning process, model parameters are
what constitute the model itself. Examples of parameters include

• The coe�cients (or weights) of linear and logistic regression models.

• Weights and biases of an nn

• The cluster centroids in clustering
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2.7 Neural Networks

A neural network is a series of algorithms that endeavors to recognize under-
lying relationships in a set of data through a process that mimics the way
the human brain operates. In this sense, neural networks refer to systems of
neurons, either organic or artificial in nature.

2.7.1 Deep Neural Networks

Deep Learning is a sub-field of machine learning concerned with algorithms
inspired by the structure and function of the brain called artificial neural
networks. Deep neural networks consist of multiple layers of interconnected
nodes, each building upon the previous layer to refine and optimize the pre-
diction or categorization.
Forward propagation: The input data is fed in the forward direction through
the network. Each hidden layer accepts the input data, processes it as per
the activation function, and passes it to the successive layer.
Back-propagation: Back-propagation computes the gradient of the loss func-
tion with respect to the weights of the network. Back-propagation is one
of the important algorithms for training the feed-forward network. Once we
have passed through the forwarding network, we get the predicted output to
compare with the target output. Based on this, we understood that we can
calculate the total loss and say whether the model is good to go or not.

2.7.2 Transfer learning

Transfer learning is a machine learning method where a model developed for
a task is reused as the starting point for a model on a second task.
It is a popular approach in deep learning where pre-trained models are used
as the starting point for computer vision and natural language processing
tasks given the vast computing and time resources required to develop neu-
ral network models for these problems and from the huge jumps in a skill
that they provide on related problems.
The transfer learning used in deep learning is Inductive Transfer learning
where the source and target domains are the same, yet the source and target
tasks are di↵erent from each other. The algorithms try to utilize the induc-
tive biases of the source domain to help improve the target task. Depending
upon whether the source domain contains labeled data or not, this can be
further divided into two subcategories, similar to multitask learning and self-
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taught learning, respectively.

2.7.3 Computer Vision and Object detection

Computer vision is a field of artificial intelligence (AI) that enables computers
and systems to derive meaningful information from digital images, videos,
and other visual inputs — and take actions or make recommendations based
on that information. Computer vision is the broad parent name for any
computations involving visual content – that means images, videos, icons,
and anything else with pixels involved.
Object detection is a computer vision technique for locating instances of
objects in images or videos. Object detection algorithms typically leverage
machine learning or deep learning to produce meaningful results.

2.8 Base Networks

After we input the image into the architecture, the first component we come
across is the base network. The base network is typically a CNN pre-trained
for a particular classification task. This CNN will be used for transfer learn-
ing, in particular, feature extraction. The base network is used to extract
features from the input image. And include the following.

• Alex-net: The name given to a Convolutional Neural Network Architec-
ture that won the LSVRC competition in 2012. The Alex-Net contains
8 layers with weights;5 convolution layers and 3 fully connected layers.
At the end of each layer, Re-Lu activation is performed except for the
last one, which outputs with a soft-max with a distribution over the
1000 class labels.
Architecture
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Figure 2.17: Illustration of Alex-net
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• Google Net is a 22-layer deep convolutional neural network that’s a
variant of the Inception Network, a Deep Convolutional Neural Net-
work developed by researchers at Google.
The Google Net architecture presented in the ImageNet Large-Scale
Visual Recognition Challenge 2014(ILSVRC14) solved computer vision
tasks such as image classification and object detection.
Architecture

Figure 2.18: Illustration of Google-net

• VGGNET
VGG stands for Visual Geometry Group; it is a standard deep Con-
volutional Neural Network (CNN) architecture with multiple layers.
The “deep” refers to the number of layers with VGG-16 or VGG-19
consisting of 16 and 19 convolutional layers. The VGG architecture is
the basis of ground-breaking object recognition models. Developed as
a deep neural network, the VGGNet also surpasses baselines on many
tasks and datasets beyond ImageNet. Moreover, it is now still one of
the most popular image recognition architectures
The VGG network is constructed with very small convolutional filters,
the input takes in an input size image of 224*224 VGG Architecture
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Figure 2.19: Illustration of VGG

2.8.1 Single Stage Detector

A single-stage detector removes the RoI extraction process and directly clas-
sifies and regresses the candidate anchor boxes. Examples are the YOLO
family (YOLOv2, YOLOv3, YOLOv4, and YOLOv5) Corner-Net, Center-
Net, and others.

YOLO is an object detection architecture simply called YOU ONLY
LOOK ONCE. This involves the use of a single neural network trained end
to end to take in a photograph as input and predicts bounding boxes and
class labels for each bounding box directly. YOLO is a typical single-stage
detector.

It consists of mainly three types of layers: Convolutional, Maxpool, and
Fully Connected. The YOLO network has 24 convolutional layers, which
do the image feature extraction followed by two fully connected layers for
predicting the bounding box coordinates and classification scores
The architecture of Yolo
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Figure 2.20: Illustration of Yolo

2.8.2 Two-stage Object Detectors

Two-stage detectors divide the object detection task into two stages: extract
ROIs (Region of interest), then classify and regress the ROIs. Examples
of object detection architectures that are 2-stage oriented include R-CNN,
Fast-RCNN, Faster-RCNN, Mask-RCNN, and others. Let’s take a look at
the Mask R-CNN for instance.

Mask R-CNN
The Mask R-CNN is a typical Object Instance Segmentation technique for
object detection. This architecture is an extension of Faster R-CNN by
adding a branch for predicting segmentation masks on each RoI, in parallel
with the existing branch for classification and bounding box regression. The
mask branch is a small FCN applied to each RoI, predicting a segmentation
mask in a pixel-to-pixel manner. Below is an architectural demonstration of
Mask R-CNN.
The architecture of mask r-cnn
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Figure 2.21: Illustration of a Mask R-cnn

Detectron2 is a popular PyTorch-based modular computer vision model
library. It is the second iteration of Detectron, originally written in Ca↵e2.
The Detectron2 system allows you to plug in custom state-of-the-art com-
puter vision technologies into your workflow.

Detectron2 includes all the models that were available in the original De-
tectron, such as Faster R-CNN, Mask R-CNN, RetinaNet, and DensePose. It
also features several new models, including Cascade R-CNN, Panoptic FPN,
and TensorMask.
The Architecture of Detectron 2

37



Figure 2.22: Illustration of a Detectron 2

[8]
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2.9 Related work

2.9.1 Convolutional Neural Networks For Automated
Fracture Detection and Localization onWrist Radio-
graphs

This project had two deliverables

• A data set was gathered of 7356 wrist radio-graphic studies extracted
from a hospital picture archiving and communication system of these
there were 245 fracture images. Of the 245, there were 244 lateral im-
ages with fractures, consisting of 243 images with one fracture mark
and one image with, also there were 188 fractures on the frontal view
and 97 fractures on the lateral view. A total of 548 images (268 frontal,
280 lateral) had no marks and for purposes of this study were consid-
ered normal.

• To demonstrate the feasibility and performance of an object detection
convolutional neural network (CNN) for fracture detection and local-
ization on wrist radio-graphs. A deep learning object detection network
detected and localized radius and ulna fractures on wrist radio-graphs
with high sensitivity at a per-fracture (frontal 91.2%, lateral 96.3%),
per-image (frontal 95.7%, lateral 96.7%), and per-study (98.1%) level,
even with a relatively modest training data-set size of 7356 radio-
graphic studies.

Results
To demonstrate the Feasibility and Performance of an Object detection con-
volutional neural network (CNN) for fracture detection and localization on
wrist radio-graphs. A deep learning object detection network detected and
localized radius and ulna fractures on wrist radio-graphs with high sensitiv-
ity at a per-fracture (frontal 91.2%, lateral 96.3%), per-image (frontal 95.7%,
lateral 96.7%), and per-study (98.1%) level, even with a relatively modest
training data-set size of 7356 radio-graphic studies.
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Figure 2.23: Illustration of a ROC per study

Data points represent empirical operating points based on a cuto↵ value
of the convolutional neural network confidence score. There used a more
homogeneous set of wrist radio-graphs only for the training which made con-
version easy for the CNN, In all our training data were manually checked and
annotated by radiologists. This is more time-consuming but provides more
accurate data labeling.
The use of bounding boxes to indicate the location of abnormality helps to
refine the training of the network to detect image features that are pertinent
to the problem at hand.

There used a state-of-the-art object detection network (Inception-ResNet
version 2 with Faster R-CNN), which may be more e�cient at extracting
relevant features from the training data compared with the older VGGNet
and Inception networks.

Radio-graphs of selected true-positive examples of radius and ulna frac-
ture
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Figure 2.24: Illustration of a Radio-graphs

Green boxes are marks made by the Faster R-convolutional neural net-
work deep learning network trained to detect and localize fractures. Per-
centages given for each mark reflect the confidence score by the network of
a fracture located within the marked box.

Radio-graphs show selected false-positive examples
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Figure 2.25: Illustration of a Radio-graphs

Old fractures and artifacts on the image were a common cause of false-
positive marks (green boxes) made by the trained networks. Percentages
given for each mark reflect the confidence score by the network of a fracture
located within the marked box.// Drawbacks of the deep learning network

• There only included radius and ulna fractures and did not evaluate all
potential fractures on a wrist radio-graph, such as carpal or metacarpal
fractures. This is because radius and ulna fractures are much more
prevalent, and thus obtaining su�cient training examples for deep
learning was feasible, there was uncertainty if the model would per-
form with limited class examples.

• There only tested our model on emergency department wrist radio-
graphs, and our results may not generalize to other settings such as
orthopedic outpatient radio-graphs and excluded training and testing
with orthopedic outpatient radio-graphs because of the large proportion
of metallic implants in routine orthopedic outpatient radio-graphs of
the wrist. Including such radio-graphs may unintentionally teach the
CNN to associate the presence of metallic implant with the presence of
a fracture, rather than discriminate features of the fracture per see.

[7]
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2.9.2 Fracture Detection in Wrist X-ray Images Using
Deep Learning-Based Object Detection Models

In this study the aim was to perform fracture detection by use of deep-
learning on wrist X-ray images to support physicians in the diagnosis of
these fractures, particularly in the emergency Services, this project had 4
deliverables.

• The wrist X-ray images collected from Gazi University Hospital were
used within the scope of the study, physicians gave assistance in data
collection and labeling of the x-ray images, and the 542 images collected
from the hospital were in Di-com format There is a heterogeneous dis-
tribution of both right-wrist and left-wrist images in the data-set from
275 patients.

• In order to use the collected data in CNN-based object detection mod-
els, the format was converted from DI-COM format to 3-channel png
format, Pydicom library was used to read and extract information from
images taken in DI-COM format. Images in DI-COM format were con-
verted to gray-scale PNG format using the library. After certain op-
erations were made on the images in PNG format, normalization was
made within the framework in the object detection network, and train-
ing and testing were carried out by converting them to RGB format
in order to perform operations such as coloring on the image in future
studies.

• All of the wrist images taken from Gazi University Hospital consist of
fracture (abnormal, unhealthy, positive) images. Therefore, there is at
least one fracture in each of the images in the data-sets. There are a
total of 569 fractures in 542 wrist images used within the scope of the
study. The distribution of the 569 fractures in the data-set is as follows:
there are 459 labels in 434 training data, 55 labels in 54 validation data,
and 56 labels in 54 test data.

• To develop the most compatible model for performing fracture detec-
tion in wrist X-ray images.

• To develop in the future a portable x-ray tool for diagnosing fractures.

Results
For fracture detection in wrist X-ray images, a total of 20 fracture detection
procedures were performed, with and without augmentation, in 10 di↵erent
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deep learning-based models.

Training loss and epoch results for the highest validation AP50 in detec-
tion models

Figure 2.26: Illustration of Training loss of Validation at an AP of 50

In this table, we observed that the number of epochs with the highest
validation accuracy varies between 6–21 in models without augmentation
and 5–12 in models with augmentation and that the lowest loss values were
achieved from di↵erent training times in models both with and without aug-
mentation are achieved in SABL Faster R-CNN for train bbox loss and in
DCN Faster R-CNN model for train loss.
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Validation of AP50 and AR results of detection models

Figure 2.27: Illustration of Training loss of validation at an AP of 50

This suggests that the best AP50 scores in validation were obtained in
Dynamic R-CNN models with/without augmentation among the models used
for detection.

Test AP50 and AR results of detection models

Figure 2.28: Test AP at 50 of Detection models

In this table among all the models used for fracture detection in wrist
X-ray images, the highest AP50 score obtained on the test data was 0.754 in
the PAA model with augmentation.
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The Precision-recall curve of PAA (best score of 20 models).

Figure 2.29: Precision and Recall curve

Fracture Detection Results of Proposed Models
Based on the results of 20 models based on deep learning in which fracture
detection was performed in wrist X-ray images ensemble models were devel-
oped, thus leading to an improvement in the detection results.

46



The precision-recall curve of WFD-C (best score of ensemble models).

Figure 2.30: Precision and Recall curve

For the results of detection carried out with the ensemble models, the
precision-recall curve of the WFD-C ensemble mode with the highest AP
score is shown above.

Comparison with various amounts of wrist test data sets.

Figure 2.31: Comparison of various Wrist Test Data-sets

WFD-C ensemble model developed had the highest AP score
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Drawbacks of the system

• Fracture labeling: other small bone (trapezoid, trapezium, scaphoid,
capitate, hamate, triquetrum, pisiform, lunate) fractures in the Wrist
were not studied and were ignored.

• YOLO and other deep learning models that do not support 800 × 800
× 3 sizes were not used.

• In the distribution of the data set, the number of fractures per image
was not considered to be equal in the train, validation, and test data
set.

[14]
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Chapter 3

Methodology

3.1 Introduction

This chapter describes in detail the entire processing of development, train-
ing, and deployment of the deep learning model for the detection of fractures
in x-ray images. The process involved the use of di↵erent tools and software
such as Anaconda, and Google colab among others as will be elaborated.

3.2 Data Set Development

3.2.1 Obtaining Data-set

We downloaded the 1548 hand fractured X-ray images from the universe.roboflow.org,
and the images were already labeled in YOLO format. The images we down-
loaded had no missing annotations and no null examples meaning that all
images in the data-set had fractures. The data set had 1846 annotations
across the 1548 images with an average of 1.2 annotations per image. Some
images from the data-set
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Figure 3.1: Images from the Dataset

3.3 Exploratory Data Analysis

EDA is used to understand and summarize the contents of a data-set, usually
to investigate a specific question or to prepare for more advanced modeling.
EDA typically relies heavily on visualizing the data to assess patterns and
identify data characteristics that the analyst would not otherwise know how
to look for.
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3.3.1 Random Sampling

Figure 3.2: Sampling Table for the EDA

3.3.2 Data-set Distribution

To access the data-set distribution we plotted a histogram.
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Figure 3.3: Data-set distribution

3.3.3 Anatomy of the Data-set

Bone Anatomy

Most bones develop from cartilaginous ossification centers which form either
a diaphysis (shaft) or an epiphysis (end). During bone growth, the diaphysis
and epiphysis are separated by the growth plate (also known as the epiphy-
seal line or physis) which fuses later in life. The zone adjacent to the growth
plate on the diaphyseal side is called the meta-phys-is.
A sesamoid bone is a bone that ossifies within a tendon. The largest is
the patella. Sesamoid bones are also present at the first metatarsopha-
langeal joint (big toe) and the first metacarpophalangeal joint (thumb). Bone
Anatomy Example for the Metacarpal.
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Figure 3.4: Bones of Wrist and Hand

The metacarpals are the five long hand bones between your wrist and
fingers. They make up the palm of your hand and are visible through the
skin on the back of your hand. Each metacarpal bone corresponds to a digit
(finger) and consists of a base, shaft or body, and head.

• First (thumb) metacarpal: thickest, shortest metacarpal bone, moves
along with the trapezium.

• Second (index) metacarpal: longest metacarpal bone with the largest
base that connects to the trapezium, trapezoid, and capitate.

• Third (middle) metacarpal: articulates with the capitate

• Fourth (ring) metacarpal: articulates with the capitate and hamate.

• Fifth (pinky) metacarpal: smallest metacarpal bone, articulates with
the hamate

Bone Anatomy Example Clavicle / Scapula / Humerus
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Figure 3.5: Clavicle Scapula and Humerus Image

The clavicles, scapulae, and humeri were often clearly seen in our data-set
of X-ray images.

Ease of Interpretation

Is a way to analyze and help people make sense of the data that has been
analyzed and collected.
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• Identify and mitigate bias. We were able to easily identify and solve
the biases of the data-set having more images of the wrist than other
parts and also having more male x-ray images of patients.

• Accounting for the context of the problem. Our data-set was able to
fall in the context of our project scope of developing an automatic bone
fracture system since the majority of the images were fractured.

• Generalization and performance. Our data set was general in terms
of having more fractured x-ray images hence improving model perfor-
mance and inference.

3.3.4 Data Preprocessing

All images were resized to 640x640 using app.roboflow.com auto-resizing tool,
since this size is suitable for the YOLOv5s used during training. Image
augmentation was not conducted because the number of images was above
1500 and the YOLO family models generate good precision with data sets of
images above 1500.
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3.3.5 Model Architecture

The model design was implemented using python programming language and
TensorFlow libraries and PyTorch and run on local personal computer virtual
environments as well as google Col laboratory GPUs for additional processing
power. First, the transfer learning technique was exploited on a convolutional
neural network architecture yolov5 an established single-stage detector that
has been demonstrated to be successful on various image types in object
detection tasks. This yolov5 Ultralytics default model was pretrained on a
coco data-set which was composed of 80 classes of images ie the bird class.
Models are composed of two main parts: the backbone layers which serve as a
feature extractor, and the head layers which compute the output predictions.
To further compensate for a small dataset size, we’ll use the same backbone as
the pretrained COCO model, and only train the model’s head with fracture
detection. YOLOv5 backbone consists of 12 layers, which can be fixed by
the ‘freeze’ argument. Inputs were fed into the model head which resulted in
7038508 trainable parameters without freezing any.

Figure 3.6: Yolov5 Architecture

All images resized to 224 × 224 using the roboflow API were fed through
the yolov5 model. During training, no layers were frozen and there was no
fine-tuning which meant we remained with 7038508 trainable parameters.
The model is trained on GIOU loss function and optimized with SDG with
a learning rate of 0.001 and a decay rate of 0.005.
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3.3.6 Model Training

We divided the downloaded images into three arts that are to say train set,
validation set, and test set in the percentages 70%, 20%, 10% respectively

Figure 3.7: Table showing Data-set Split

3.4 Training results

The following loss curves in which an indication of the relative training pro-
cess where the model converged at 120 epochs Since our data has one class
only, there are no class misidentifications, and the classification error is con-
stantly zero.

Figure 3.8: Train Objectness Loss
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Figure 3.9: Train Bounding Loss

Figure 3.10: Train Classification Loss
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Figure 3.11: Validation Box Loss

Figure 3.12: Validation Objectness Losss

59



Figure 3.13: Validation Classification Loss

3.5 Model Deployment

A web-based application using the Django framework was then developed
and the YOLO v5 of the trained model was deployed onto it.
The application code was arranged to fit the three components of the MVC
architecture namely;

• Model The Model is the part of the web app which acts as a mediator
between the website interface and the database. In technical terms,
it is the object which implements the logic for the application’s data
domain. The Model is the component that contains Business Logic in
Django architecture.

• View This component contains the UI logic in the Django architecture
The view is actually the User Interface of the web application and con-
tains the parts like HTML, CSS, and other front-end technologies.

• Controller The controller as the name suggests is the main control
component. What that means is, that the controller handles the user
interaction and selects a view according to the model. The main task
of the controller is to select a view component according to the user
interaction and also apply the model component.
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Figure 3.14: MVC Architecture of Django
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Figure 3.15: Application Structure in Line with the MVC Architecture of
Django Framework
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Chapter 4

Results and discussion

4.1 Introduction

In this chapter, we were able to test the model’s performance and obtained
both qualitative results and quantitative results we also evaluated yolov5
performance with other object detection models.

4.2 Qualitative Results

The trained model was tested on the data that was in the test set to obtain
inference results. The model was able to detect all the fractures in the test
set that appeared in the x-ray images.
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Figure 4.1: Sample of the Model’s Inference

4.3 Quantitative Results

The key performance metrics used to assess the model’s performance were
the state-of-the-art dense neural network metrics which are the intersection
over Union and with mean average precision being the most of interest since
it is the accuracy for object detection models.
The positive signifies ‘Fracture detected” while the negative asserts ‘No frac-
ture detected’.
Intersection over the union:
is a metric that quantifies the degree of overlap between two regions. IoU
metric evaluates the correctness of a prediction. The value ranges from 0
to 1. With the help of the IoU threshold value, we can decide whether a
prediction is a True Positive, False Positive, or False Negative.
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Precision
Is a measure of the proportion of the predicted positives that are actually
correct. If you are wondering how to calculate precision, it is simply the True
Positives out of total detections. P = TP/(TP + FP) The value ranges from
0 to 1.

Recall
Is a measure of the proportion of actual positives that were predicted cor-
rectly.It is the True Positives out of all Ground Truths. Mathematically, it
is defined as follows.

R = TP / (TP + FN) = TP / Total Predictions The value ranges from
0 to 1.

Average Precision(AP).
Is the area under the precision-recall curve.

Mean Average Precision(mAP).
Mean Average Precision or mAP is the average f AP over all detected classes.
mAP = 1/n×sum(AP), where n is the number of classes. where; TP: True
Positive FP: False Negative FP: False Positive All the fractures in the x-
ray images (“1”) test images were correctly detected by the model while the
model failed to detect all fractures in x-ray images with multiple fractures.
Mean average precision(mAP) of 0.856 at an IOU of 0.5, recall of 84.6 and
precision of %90.1

Figure 4.2: Recall and Precision
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Figure 4.3: Mean Average Precision at 0.5

[13]

4.3.1 Model Evaluation

To demonstrate the e↵ectiveness of the yolov5 model, we compared the re-
sults to the performance of an E�cientDet and Detectron 2 model using the
same training, validation, and test data set and the following results were
obtained at an intersection of the union of 0.5.
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Figure 4.4: Model Results

From the table above, the yolov5 model outperforms the other models.

4.4 Model Deployment Results

The di↵erent front-end pages such as the features page, log in, image set, and
upload pretrained model were designed using HTML, CSS, and JavaScript
in VS code after which all the components of the system were integrated,
and the model was successfully deployed on the web-based decision support
application to allow radiologists to upload of x-ray images for detection of
fractures shown in figures below.

Figure 4.5: Web page of login In
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Figure 4.6: Web page for Uploading a Model

Figure 4.7: Web page for uploading an Image

68



Figure 4.8: Web page for Performing a Prediction

4.5 Result Analysis and Discussion

For fracture detection, the model exhibited a high mean average precision
in its detection during testing. All the fractured test images were correctly
retrieved by the model during testing. Although the model showed very out-
standing performance with the detection of single fractures in x-ray images
but had a problem detecting multiple fractures in x-ray images due to the
non-max suppression in inference.
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Chapter 5

Conclusion, Challenges and
Recommendations

5.1 Conclusion

Due to the observer variability among radiologists due to their di↵erences
in knowledge and experience, A uniform approach to the detection of bone
fractures in X-ray images is needed.
An automatic bone fracture detection system using deep learning was pre-
sented in this project.
Open source data was downloaded from roboflow computer vision API and
curated, resulting in 1548 fractured images. Three object detection models
ie yolov5, e�cientDet, detectron 2 were trained, tested, and validated on the
same data-set and their hyper-parameters were left in their default setting.
Yolov5 outperformed the other models with a mean average precision of
85.6% at an intersection of union of 0.5 and therefore it was deployed on a
web-based decision support application.
The application is a decision support tool for radiologists to alleviate the
challenge of observer variability during the detection of fractures in x-ray
bone images.
It, therefore, becomes more evident that computer vision is highly suitable
and goes a long way in automating the detection of fractures in x-ray images
to alleviate the challenge of observer variability which can cause image mis-
interpretation and erroneous prescriptions.
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5.1.1 Challenges

The open source data was not large enough for a better model performance
with the minimal number of epochs and therefore our results from the model
were not the best.
More still, some x-ray images representing some fractures on certain parts
of the body were very scarce which slowed down the learning process of the
model.

5.1.2 Recommendations

Local bone x-ray bone fracture image data should be collected, pooled, and
made more accessible to researchers to ease their work, especially in the area
of deep learning solution-based research.
The system should be tested on local clinical data in order for the system to
be included in the clinical local setting to solve the problem of backlog.
Lastly, future research can be done in detecting bone fractures for the whole
body.
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