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ABSTRACT 

Drought is a recurring and most complex weather-related natural phenomenon, affecting vast areas 

and communities around the world every year due to its slow onset and cascading effects. Droughts 

are common in Uganda’s cattle corridor, but there is limited information on their occurrence and 

severity. The magnitude and pattern of drought can be measured with various drought indices 

using remote sensing and meteorological data. Many indices are used to monitor drought events. 

However, different indices have different data requirements and applications. Hence, evaluating 

their applicability will help to characterize drought events and refine the development of effective 

drought indices. The characteristics of drought events from 2000 to 2020 were compared using 

Standardized Precipitation Index and Vegetation Health Index at a five-year interval. 

Drought was assessed using Landsat 8 OLI and 7 ETM temporal images based on Vegetation 

Health Index for the years; 2000, 2005, 2010, 2015 and 2020. In addition, SPI was utilized together 

with DrinC software and meteorological (monthly precipitation) data from the Uganda National 

Meteorological Authority to compute, determine and graphically illustrate trend in drought 

severity from 1990 to 2020 at various time scales (3,6 and 12 month). 

Vegetation Health Index and Standardized Precipitation Index were used to identify the temporal 

and spatial drought patterns as derived from the study of a 20-year time period. The analysis 

revealed that 2000 and 2015 were the driest years. Using SPI, the southeastern and northwestern 

parts of the Isingiro district are the areas that are susceptible to drought and while using VHI, it 

was the northwestern, southwestern and southwestern parts of Isingiro are the areas that are 

susceptible to drought. SPI works well when there is an even distribution of weather stations in 

the area. 

SPI-3 and VHI-2010 had the lowest correlation of 0.105 at the 3-month time scale and the highest 

correlation was in 2000(0.541) and 2015(0.659). VHI showed more areas affected by drought 

compared to SPI. The comparative analysis of the two indices indicated that VHI and SPI are 

highly correlated in the years 2000 and 2015. Drought analysis based on these indices showed that 

for drought assessment VHI can be used to depict drought condition of the study area more 

realistically. The results of this comparison show that 12-month scale of SPI and VHI have a higher 

correlation. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background  

Droughts occur naturally but climate change has generally accelerated the hydrological processes 

to make them set in quicker and become more intense with many consequences (Karnieli et al., 

2010). Anthropogenic activities are causing current climate change and variability, which are 

increasing greenhouse gas concentrations in the atmosphere at an alarming rate, resulting in severe 

temperatures, droughts and flooding. Although drought is a natural occurrence, human activities 

such as deforestation, overgrazing, and inefficient farming methods, among others, can exacerbate 

its effects by reducing water retention of soil (ECA, 2007). As a result, these are causing an 

increasing occurrence of flooding and drought which are challenges for Africa due to a lack of 

financial, technical, and institutional capacity to deal with the consequences (Gemeda & Sima, 

2015). Water availability, accessibility and demand in Africa may be further strained as a result of 

the change. Due to many negative impacts associated with Global climate change, there is an 

increased focus on the occurrence of and preparation for climate-related extremes and catastrophes 

(Christenson et al., 2014).  

Drought has become a prime worldwide concern owing to its severe effect on agricultural 

productivity both animal and crop husbandry and indirect effect on employment (Dutta, et al., 

2015). Prolonged multiyear drought has caused significant damages both in the natural 

environment as well as in the development of the human society. The annual estimate for the cost 

of drought in the United States ranges from 6 to 8 billion dollars (Schubert, et al., 2007). In China, 

the amount of loss caused by drought ranks the first in the list of all natural hazards (Song, et al., 

2003). Drought is arguably the biggest threat resulting from climate change with its impacts being 

global (Pearce, 2015). According to the World Bank report of 2016, Uganda’s population being 

predominantly rural is limited in its ability to handle production shocks (Maher, 2017). Drought 

continues to be a big setback in agricultural activities especially if not well prepared for (Akwango, 

et al., 2017). 

Unlike sudden disasters, drought-related disasters develop gradually over time lasting for many 

years and having devastating effect on life and livelihoods (Prasanna, 2018; Mills et al., 2016). In 

severe circumstances it results to inadequate water for plants, animals, and humans. Drought can 

lead to food insecurity, starvation, malnutrition, diseases, and population displacement (Muller, 

2014). According to history, about 20% of the earth's geographical surface has ever suffered 
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drought at any given moment. Drought-stricken areas have expanded from 1% to 3% of the planet's 

surface in the last decade, and the situation is set to worsen. Particularly in Africa where agriculture 

is mostly rain fed especially in the East African economies, droughts have persistently led to 

widespread crop failure, food shortages, economic and even humanitarian crises (Nimusiima et al. 

2018). Kenya's, Uganda's, and Tanzania's gross domestic product (GDP) are accounted for by the 

agricultural sector in proportions of 51%, 42% and 25% respectively. With this and the tendency 

of an increasing frequency and intensity of these events, damage to the agricultural sector leaves 

the region exposed to the risk of famine (Mwangi et al., 2014; Adede et al., 2015). 

 In Uganda, recent severe droughts registered have had negative impacts on the water sector, 

agriculture and all sectors of the economy (Uganda National Climate Change Policy, 2015; 

MAAIF & MWE, 2017). The Ugandan government on the other hand has taken a range of steps 

to resolve the impact of emergencies and disasters on the population, including national disaster 

preparedness and management strategy and the Sustainable Development Goals. Uganda has 

recently created a risk and threat atlas to aid in disaster identification and mitigation (United 

Nations Development Programme, 2021). 

Despite public awareness of the problem, there is still a scarcity of information on drought, 

particularly on its prevalence and severity (Mulinde et al., 2016). Droughts are common in the 

cattle corridor region, according to (Makuma-Massa et al., 2012) who forecasts an increase in 

frequency and severity. As a result, several mitigation measures have been implemented to 

mitigate the effects. But these have not been efficient at addressing the information gap of the 

drought severity and its associated impacts. A lot of research has been conducted to monitor 

drought using several drought indices that use remote sensing data. This research therefore seeks 

to assess the performance of using Standardized Precipitation Index(SPI) and the Vegetation 

Health Index (VHI) for monitoring drought in Isingiro district so as to have an alternative index to 

monitor drought. 

1.2 Problem Statement  

Drought is a complex phenomenon and it is still a problem for many countries. Many indices are 

used to monitor drought events. However, different indices have different data requirements and 

applications. Hence, evaluating their applicability will help to characterize drought events and 

refine the development of effective drought indices. Isingiro district is mainly affected by 
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agricultural drought and SPI is the most widely used and recognized index by World 

Meteorological Organization for monitoring agricultural drought. Most studies have monitored 

agricultural drought using SPI that is calculated based on precipitation observations from stations 

that are unevenly distributed. The existing meteorological dataset has a series of gaps and cannot 

be filled and used for drought assessment (Mfitumukiza et al., 2017). The gaps are attributed to 

vandalism and subsequent system breakdowns. SPI needs continuous and long term precipitation 

data to give more representative results of the drought in the area. Meteorological data in Uganda 

is commercial and expensive. Therefore, there is need to use an index that employs other 

parameters whose data is easy to acquire, cheap and give reliable results as would be provided by 

SPI and can be relied on to monitor agricultural drought in Isingiro district to aid in the 

development of better and informed management plans in assessing drought and its consequences. 

This research seeks to compare the results of VHI and SPI so as to establish the applicability of 

VHI in agricultural drought assessment. 

1.3 Objective 

1.3.1 Main objective 

To assess the performance of SPI and VHI in drought monitoring in Isingiro district. 

1.3.2 Specific objectives 

 To determine spatial temporal variation of drought from 2000-2020  

 To determine the relationship between SPI and VHI 

1.4 Justification 

Apart from loss to agriculture, droughts have major negative effects, including land degradation, 

loss of life, and livestock. These challenges can increase drastically when drought is not properly 

managed. Information about drought occurrence and severity can help the government and 

authorities mitigate drought-related impacts. Since droughts have been a recurring feature of the 

Isingiro climate, the district needs drought analysis information. The present study seeks to provide 

information on drought severity in Isingiro district to the locals, policy makers and government 

authorities to cope with its disastrous effects can formulate thereby informed management plans. 
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1.5 Study Area 

Isingiro District is a District in South Western Uganda boarded by Kiruhura District to the north, 

Rakai District to the east, the Republican of Tanzania to the south, Ntungamo District to the west, 

and Mbarara District to the northwest. Isingiro the chief town of the District is located 

approximately 35 kilometers by road, southeast of the city of Mbarara, the main metropolitan area 

in Ankole sub-region. Isingiro District has 21 Sub-counties and 9 Town Councils, 131 parishes 

and 899 Villages by July2020. It lies between the altitude of 1200m – 1810m above sea level. 

Areas west of the District around Nyakitunda, Nyamuyaja, Kabingo and Kabuyanda hills have the 

highest altitudes up to 1810m towards Mbarara and Ntungamo District boarder. The low altitudes 

are along areas east of the District around Endiizi, Rushasha sub counties bordering with Rakai 

District and the lowest being at the main L. Nakivale water body in Rugaga Sub-County. Its Land 

area is approximately 3010 sq. Km and it is at 1800 meters above sea level. 

                                                                                               

Figure 1: Study Area 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

The literature review will examine the different areas of drought assessment research that are 

relevant to this study's goals. It includes data gathered from textbooks, journals, reports, and 

Internet, among other places. This chapter will try to harmonize the work of various scholars from 

various parts of the world in relation to Isingiro district in Uganda, where drought is a concern. 

2.2 Definition of drought 

Many people believe that drought is the most complicated but least known of all-natural hazards, 

affecting more people than any other threat. It is distinct from other natural disasters such as 

hurricanes, tropical cyclones, and earthquakes, which occur over finite time periods and cause 

visible damage as it often builds up slowly over a long period of time and can last for years after 

the event has ended, leading to the term "creeping phenomenon" (Wilhite, 2021). The phenomenon 

is difficult to research due to its slow onset and inability to discern when it began and when it 

ended (Abuzar et al., 2017). Drought does not have a generally accepted description, owing to the 

fact that it must be described in terms of the characteristics of each climatic regime (Van Loon, 

2015).  Below are some of the descriptions of drought as obtained from different drought research; 

A drought is an extended period of months or years when a region notes a deficiency in its water 

supply, whether surface or underground water especially due to existence of a precipitation level 

that is below average(Achite et al., 2022)  

Bayissa et al. (2018) define drought as “an abnormally dry condition that persists for a long period 

of time”. However, drought happens with different frequency in practically every part of the globe, 

in all sorts of economic systems, and in both developed and developing countries, therefore the 

methodologies used to characterize it must take into account geographical and ideological 

distinctions. As a result, in areas where precipitation is seasonal and lengthy intervals without rain 

are common, such a definition is unrealistic. 

Drought can also broadly be defined as a long-term average condition of the balance between 

precipitation and evapotranspiration in a particular area, which also depends on the timely onset 

of monsoon as well as its potency (Wilhite et al, 1987). 
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Drought refers to a deficiency of precipitation over an extended period, resulting in a water 

shortage that causes extensive damage to crops, living as well as non-living things (Bera et al., 

2018).This embodies the impact aspect though realistically; definitions of drought must comprise 

both region and application of specific aspects. 

Drought refers to lack of rainfall as great as so long continued to affect injuriously the plant and 

animal life of a place and to deplete water supplies both for domestic purposes and the operation 

of power plants especially in those regions where rainfall is normally sufficient for such purposes 

(Dracup, et al., 1980).  

The UNDP (2008) define drought as “the naturally occurring phenomenon that exists when 

precipitation has been significantly below normal recorded levels, causing serious hydrological 

imbalances that adversely affect land resource production systems”. However, Drought should not 

be viewed as merely a physical or natural phenomenon. Rather, drought is the result of an interplay 

between a natural event and the demand placed on water supply by human-use systems (Wilhite 

et al, 2000) that is to say, in reality, drought has both a natural and social component. 

All the above definitions have one thing in common “water deficit over an extended period of 

time”. (Wilhite et al, 1987) concluded that definitions of drought should reflect a regional bias 

since the water supply is largely a function of the climatic regime. Therefore, drought refers to a 

deficiency of water over an extended period of time with high impacts on the environment and 

agriculture in a given region. This study will adopt this definition. 

Drought is usually caused by increasing temperatures and altered precipitation patterns. Drought 

leads to a decrease in rainfall and soil moisture which eventually affects agricultural production 

(Sruthi and Aslam, 2015). Drought monitoring and assessment can be done more accurately with 

the help of geospatial techniques like remote sensing (Sruthi and Aslam, 2015). 

2.3 The different types of drought 

Droughts are grouped into four main types and are defined according to disciplinary perspectives 

(Heim, 2002). Meteorological drought, hydrological drought, socio-economic drought, and 

agricultural drought are discussed in detail below; 
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2.3.1 Meteorological drought 

Meteorological drought is usually defined by a precipitation deficiency threshold over a 

predetermined period of time (Sciences, 2012). Since the atmospheric conditions that result in a 

lack of precipitation are climate regime dependent, meteorological drought concepts are 

considered area-specific(Wilhite, 2021).The standard precipitation index (SPI), standard 

precipitation evapotranspiration index (SPEI), percentage of normal rainfall, and Palmer Drought 

Severity Index are some of the indices and methodologies used to describe meteorological drought. 

The SPI is currently the most used index worldwide to measure meteorological droughts and there 

on for this research. 

2.3.2 Agricultural drought 

Agricultural drought is measured in terms of deficiency in soil moisture, rainfall, ground water 

and reduction in crop yield (Abuzar et al., 2017). Drought in agriculture refers to an imbalance in 

the water content of the soil during the growing season which is affected by other factors such as 

crop water requirements, water-holding capacity and evaporation rate is largely dependent on 

rainfall amount and distribution. Since soil moisture supplies are often quickly depleted, 

agriculture is typically the first economic sector to be affected by drought particularly if the time 

of moisture shortage is associated with high temperatures and windy conditions (Wilhite, 2021). 

The Soil Moisture Percentile (SMP), Normalized Difference Vegetation Index (NDVI), Crop 

Moisture Index (CMI), Temperature Condition Index (TCI), Vegetation Condition Index(VCI), 

Vegetation Health Index(VHI), Normalized Soil Moisture (NSM), and Standardized Soil Moisture 

Index (SSI) are some of the most commonly used agricultural drought indicators. Agricultural 

drought usually precedes meteorological drought (Hao et al., 2018) 

2.3.3 Hydrological drought 

Hydrological drought refers to a duration of insufficient surface and subsurface water supplies for 

existing water uses of a given water resources management system. For hydrologic drought 

analysis, streamflow data has been commonly used. Geology is one of the key factors affecting 

hydrology, according to regression studies linking droughts in stream flow to catchment properties 

(Belal et al., 2014). It also happens when there is a significant shortfall in surface runoff below 

normal conditions or when groundwater sources are depleted. As a result of the drought, the 

availability of water for irrigation, hydroelectric power generation, and other household and 
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industrial uses is reduced (Sciences, 2012). This could last for a long time after a meteorological 

drought has passed. 

2.3.4 Socio-economic drought 

Socio-economic drought is the final phase of drought that occurs when the demand for an 

economic good exceeds supply as a result of a weather-related shortfall in water supply (Belal et 

al., 2014). It represents the impact of drought on human activities, including both indirect and 

direct impacts. This relates to a meteorological anomaly or extreme event of intensity and duration 

outside the normal range of events taken into account by enterprises and public regulatory bodies 

in economics (Sciences, 2012). 

2.4 Remote Sensing and Geographical Information System (GIS) 

Drought forecasting plays an important role in the planning and management of water resource 

systems (Karthika, et al., 2017). The identification of drought extent at administrative levels is an 

important program to evaluate the probability of drought occurrence and its severity especially to 

increase food security (Sruthi and Aslam, 2015). Early indication of possible drought can help to 

set out drought mitigation strategies and measures in advance (Karthika, et al., 2017). Impacts due 

to drought can be mitigated, if they are detected in advance through measures and monitoring.  

Modern technologies such as Remote Sensing and Geographic Information Systems (GIS) have 

proved to be useful in studies relating to environmental resources most especially drought risk 

assessment. Drought can be monitored effectively over large areas using remote sensing 

technology (Sruthi and Aslam, 2015).    

Remote sensing, according to the United States Geological Survey (USGS) is the method of 

detecting and tracking an area's physical characteristics by measuring its reflected and emitted 

radiation from a distance. Sensors with several spectral bands are placed on planes or satellites. A 

satellite orbits the Earth and explores the entire surface in a few days, returning to the same location 

at regular intervals to replicate the survey. The spectral bands used by these sensors span the visible 

to microwave spectrum (Jeyaseelan, no date). 

Geographic Information System (GIS) is a computer-based method for mapping and evaluating 

objects that exist and events that occur on Earth, according to the Environmental Systems Research 
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Institute (ESRI). It entails capturing, storing, verifying, and displaying data about locations on the 

Earth's surface 

The detection, monitoring and mitigation of the disaster and its effects requires relevant 

information regarding the disaster in real time and continuous data generation. Since disasters that 

cause huge social and economic disruptions normally affect large areas and are linked to global 

change, it is not possible to effectively collect continuous data on them using conventional 

methods. Remote sensing tools offer excellent possibilities of collecting this data. (Chopra, 2006). 

This allows continuous information to be obtained and distributed over wide areas using sensors 

that operate in several spectral bands and are installed on aircraft or satellites (Jeyaseelan, no date; 

Belal et al., 2014).  

Remote sensing and GIS plays an important role in detecting, assessing and managing droughts as 

they offer up to date data on spatial and temporal scales that can help alleviate the effects of 

drought(Abuzar et al., 2019). Geographical Information Systems help to process Remote Sensing 

observations from satellites in a spatial format of maps and provide the spatial visualization of 

information of natural resources thus enabling easy identification, monitoring and assessment of 

droughts (Jeyaseelan, no date). 

Remote sensing also serves as a great communication tool, allowing for coverage of inaccessible 

areas. As a result, remote sensing techniques are being used to monitor disasters at key stages such 

as before, during, and after the case. Most importantly this technology is being used to gather 

baseline data against which future changes can be compared as seen in this study.  

Geographical Information System enables a meteorological station to connect to it and keep 

receiving meteorological information directly entered into GIS, and then these data managed and 

analyzed uniformly by the system database (Belal et al., 2014). 

 Drought risk assessment has been significantly improved by advances in the fields of GIS and 

remote sensing (RS) over the last four decades. Because much of the data needed for drought risk 

assessment has a spatial dimension and changes over time, the use of GIS and RS is important 

(Belal et al., 2014). 
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2.5 The different drought indices used in drought risk assessment 

2.5.1 Meteorological drought indices 

Many drought indices have been established and used by meteorologists and climatologists over 

the years to detect the potential for drought occurrence and severity around the world (Mlenga, 

Jordaan and Mandebvu, 2019). There are many indicators that calculate how much precipitation 

has deviated from historically defined averages over a given period of time. Palmer Drought 

Severity Index (PDSI), Crop Moisture Index (CMI), Standardized Precipitation Index (SPI), and 

Surface Water Supply Index are some of the most commonly used drought indices for 

Meteorological drought monitoring, forecasting, and water resource management(Himanshu, 

Singh and Kharola, 2015). 

2.5.2 Palmer Drought Severity Index (PDSI)  

Palmer (1965) created the PDSI with the aim of measuring the accumulated departure in surface 

water balance or moisture supply so that comparisons using the index could be made between 

locations and between months. This has also been widely used to investigate variations in aridity 

in present and past climates. The index is a meteorological drought index that responds to weather 

conditions that are unusually dry or wet (Agwata, 2014). The PDSI is measured using weather data 

such as precipitation and temperature, as well as the soil's local Available Water Content (AWC). 

All of the basic elements of the water balance equation, including evapotranspiration, soil 12 

recharge, runoff, and moisture loss from the surface layer, may be calculated using the inputs. 

Human influence on the water balance, such as irrigation, are not taken into account (Agwata, 

2014). The PDSI is a standardized indicator with a range of 0 to +10 (dry to wet), with values 

below 3 indicating severe to extreme drought (Rimkus et al., 2017). 

The advantage of PSSI; The index’s popularity and wide application in drought monitoring may 

be attributed to the fact that it provides decision makers with a measurement of the abnormality of 

recent weather for a region; an opportunity to place current conditions in historical perspective; 

and spatial and temporal representations of historical droughts (Agwata, 2014). The index is most 

effective measuring impacts sensitive to soil moisture conditions, such as agriculture; is useful as 

a drought monitoring tool and has been used to trigger actions associated with drought contingency 

plans.  
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Shortcomings of PDSI include: The lag between precipitation and runoff is not considered. Runoff 

is normally under estimated due to the model that only considers runoff once water capacity of 

surface and sub-surface soil is full; therefore, PDSI is ineffective in areas where runoff and 

precipitation are highly variable. 

PDSI is less well-suited for mountainous land or areas of frequent climatic extremes; is complex 

and has an unspecified, built-in time scale that can be misleading (Agwata, 2014). Since the PI is 

sensitive to the AWC of a soil type, using it for a climate division might be too wide. The two soil 

layers used in water balance calculations are simplistic and may not be accurately indicative of a 

specific area (Sciences, 2012) 

2.5.3 Standardized Water Supply Index (SWSI) 

The SWSI is a hydrological drought index that was developed to complement the PDSI in areas 

where local precipitation is not the primary source of stream flow in order to include snowpack 

also as a key element of water supply (Sciences, 2012). This index was designed to work best in 

mountainous areas with significant snowfall because of delayed contribution of snowmelt runoff 

to surface water supplies. It has the benefit of being simple to calculate and providing a 

representative measurement of surface water supply across a basin. One of the main limitations of 

the SWSI; It represents water supply conditions unique to a basin and has the disadvantage that 

changing a data collection station or water management requires that 13 new algorithms be 

calculated, and the index is unique to each basin, which limits inter basin comparisons (Agwata, 

2014). That is to say, one cannot compare SWSI values between basins and regions. 

2.5.4 Crop Moisture Index 

Palmer introduced Crop Moisture Index (CMI), a new drought index dependent on weekly mean 

temperature and precipitation, three years after introducing PDSI CMI measures moisture 

availability in major crop-producing regions over the short term and is not intended to determine 

long-term drought (Rimkus et al., 2017). 

Short comings of CMI: The index is not effective for long-term drought monitoring since it is 

designed for short term soil moisture demand of crops. CMI is not useful for crop initiation periods 

when it differs from place to place-seed germination. 
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2.5.5 Standardized Precipitation Index 

Tom McKee, Nolan Doesken, and John Kleist of the Colorado Climate Centre established the SPI 

in 1993 to measure the precipitation deficit over a variety of timescales and locations. The effect 

of drought on the availability of various water supplies is represented by these timescales, which 

include days, weeks, months, and years. 1-month, 3-month, 6-month, 9-month, 12-month, and 24- 

month cycles are widely used to measure the SPI. These timescales are suitable for monitoring 

various forms of drought and correspond to different drought impacts. The SPI can be calculated 

for any location that has a long-term precipitation data (Mlenga, Jordaan and Mandebvu, 2019). 

This long-term data is fitted to a probability distribution, which is then converted into a normal 

distribution to monitor dry and wet periods, resulting in a mean SPI of zero for the desired position 

and time (Mlenga, Jordaan and Mandebvu, 2019).  

The SPI is globally the preferred index to be used for drought assessment because of its robustness 

and tractability (Abood and Mahmoud, 2018). Other benefits of the index include the fact that it 

can be computed for many time scales, can provide early warning of drought, can aid in drought 

severity assessment, and is simpler than the Palmer index (Agwata, 2014).  

SPI is an appropriate index for drought study in East African countries, as indicated by many 

researches, when compared to other indices. For example, (Ntale, Gan and Mwale, 2003) said that 

SPI is better suited to monitoring droughts in East Africa because it is easily modified to the local 

climate, it requires less data, it generates spatially consistent results, and it can be computed almost 

at any time scale (Mekonen, Berlie and Ferede, 2020).  

However, one of the SPI's flaws is that it does not include evapotranspiration in its equation. Since 

evapotranspiration is included in the mathematical equation, the Standard Precipitation 

Evapotranspiration Index (SPEI) is a stronger measure than the SPI. However, the availability of 

data is the most significant obstacle to the SPEI's implementation. Since evapotranspiration data 

for the entire district is not available for this study, the SPI was chosen as the indicator. 

Interpretation of SPI values. 

When the SPI is consistently negative and reaches an amplitude of -1.0 or less, a drought event 

occurs; the event stops when the SPI is positive, meaning that the negative values signify drought, 

while the positive values refer to wet conditions. Each drought event, therefore, has a duration 
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defined by its beginning and end, and intensity for each month that the event continues (Mlenga 

et al., 2019 and McKee et al., 1993) described drought intensities as a result of the SPI using the 

classification method.  

Table 1:Category of SPI based on range values (source:(Chopra, 2006) 

SPI Range Category 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-1.0 to -1.49 Near normal 

-1.5 to -1.99 Moderately dry 

-.99 to .99 Severely dry 

-2 and less Extremely dry 

 

2.6 Satellite based drought indices for Agricultural drought characterization 

Remote sensing-based drought monitoring can be done using vegetation indices such as the 

Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), 

Temperature Condition Index (TCI). The NDVI and VCI are completely based on the vegetation, 

TCI takes into account the temperature factor (Belal et al., 2014; Aswathi et al., 2018). The 

agricultural drought monitoring in this study will be carried out using NDVI because, among all 

the vegetation indices available, it is a widely appropriate index for operational drought assessment 

due to its ease of measurement, interpretation, and ability to partially compensate for the effects 

of atmosphere, illumination geometry (Gupta et al., 2013). 

2.6.1 Vegetation Condition Index (VCI) 

It was first suggested by Kogan (Thenkabail, Gamage and Smakhtin, 2004; Vogt et al., 2018)                                               

VCI is an indicator of the status of the vegetation cover as a function of the status of the vegetation 

cover as a function of the NDVI minimum and maxima encountered for a given ecosystem. VCI 

is used to recognize drought situations and determine when they begin, especially in areas where 

drought episodes are localized and poorly defined. It focuses on the effects of drought on 

vegetation, and by noting vegetation changes and contrasting them to historical values, it can 

provide information on the onset, extent, and severity of drought.                                                  
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Short coming of VCI: Potential for cloud contamination as well as a short period of record 

(Meteorological et al., 1906).VCI has very low value in case of high cloud cover, thus wrongly 

depicting them as drought prone areas. To overcome such problems, the temperature-based indices 

can be used, which uses the thermal band derived brightness values to compute TCI (Aswathi et 

al., 2018).  

The combination of NDVI and LST provides very useful information for monitoring and assessing 

drought and developing an early warning system for drought especially to the farmers (Sruthi and 

Aslam, 2015).Unlike the meteorological based drought estimation, VCI provides satellite based 

near real time data with comparatively high spatial resolution (Quiring, 2009). 

VCI compares the current NDVI to range of values observed in the same period in previous years. 

The vegetation condition index is expressed in percentages and gives an idea where the observed 

value is situated between the extreme values (minimum and maximum) in previous years. Lower 

and higher values indicate bad and good vegetation state conditions respectively. VCI varies from 

0 for extremely unfavorable conditions to 100 for optimal. VCI is computed using the formula 

below;  

VCI = 
𝐍𝐃𝐕𝐈𝐚–𝐍𝐃𝐕𝐈𝐌𝐈𝐍

𝐍 𝐃𝐕𝐈𝐌𝐀𝐗– 𝐍𝐃𝐕𝐈𝐌𝐈𝐍
∗ 𝟏𝟎𝟎                                                                                                                                    

Where; NDVIa is the NDVI of the current month of observation.                                                              

NDVIMIN is the minimum NDVI value throughout the period of observation.                                                   

NDVIMAX is the maximum NDVI value throughout the period of observation. 

VCI has been described as an accurate parameter for drought assessment but it is not enough to 

use it alone (Sholihah et al., 2016). It is therefore better to combine the Vegetation Condition Index 

(VCI) with Land Surface Temperature (LST). 

2.6.2 Temperature Condition Index (TCI) 

Temperature Condition Index (TCI) was also suggested by Kogan (1997). TCI is used to assess 

how temperatures and excessive wetness affect vegetation. The conditions are measured using 

maximum and minimum temperatures, and then updated to account for different vegetation 

responses to temperature (Svoboda and Fuchs, 2017). TCI is based on brightness temperature and 

measures the difference between the current month's temperature value and the maximum 
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temperature observed in the previous month (Chopra, 2006). Drought-affected areas can also be 

observed before biomass degradation occurs using meteorological measurements and the 

relationship between ground surface temperature and moisture regimes. As a result, TCI is crucial 

in drought monitoring. Shortcomings of Temperature Condition Index are potential for cloud 

contamination as well as a short period of record.                                                                                             

TCI identifies vegetation stress caused by high temperature, as well as excessive wetness and 

mostly used to observe changes in vegetation condition from bad to optimum(Singh, Roy and 

Kogan, 2003).Conditions are estimated relative to the maximum and minimum temperatures and 

modified to reflect different vegetation responses to temperature. TCI varies from 0 for extremely 

unfavorable conditions to 100 for optimal conditions. The TCI is obtained using the formula 

below;  

TCI =  
LSTmax− LSTa

LSTmax−LSTmin 
∗ 100                                                                                                                 

Where; LSTa is the temperature value of the current month.                                                                                                                 

LSTmax is the maximum temperature value throughout the observation period.                                                                       

LSTmin is the minimum temperature value throughout the observation period 

2.6.3 Normalized Difference Vegetation Index (NDVI) 

Tucker first suggested NDVI in 1979 as an index of vegetation health and density (Hammouri and 

El-Naqa, 2007). NDVI has been extensively used for vegetation monitoring of wide areas, crop 

yield assessment, and drought detection (Himanshu, Singh and Kharola, 2015; Abood and 

Mahmoud, 2018). As a result, Vegetation is constantly monitored for conditions of drought using 

the Normalized Difference 16 Vegetation Index (Senay et al., 2014). The formula is used to 

calculate this index from a satellite image using spectral radiance in red and near infrared 

reflectance (Belal et al., 2014); 

       NDVI = 
𝐍𝐈𝐑−𝐑𝐄𝐃

𝐍𝐈𝐑+𝐑𝐄𝐃
  

Where: NIR = The amount of near infrared light reflected by the vegetation and captured by the 

satellite sensor. RED = The amount of red light in the visible spectrum that is reflected by the 

vegetation and captured by the satellite sensor.  
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This is due to the fact that healthy vegetation absorbs the majority of visible light and reflects a 

significant portion of near-infrared light. Vegetation that is unhealthy or sparse reflects more 

visible light and less near-infrared light. In the red and infrared portions of the electromagnetic 

spectrum, bare soils, on the other hand, reflect moderately. Theoretically, NDVI is a nonlinear 

function that ranges between -1 and +1 (Hammouri and El-Naqa, 2007).However, in practice 

extreme negative values represent water, snow, ice and non-vegetated surfaces. Values around 

zero represent bare soil and values over 0.6 represent dense green vegetation, lower NDVI values 

are indicators of prevalence of drought condition (Belal et al., 2014). 

A variety of Studies have assessed drought using NDVI for example, Tucker and Choudhury 

(1987) found out that NDVI may be used as a response variable in semiarid and arid environments 

to identify and quantify drought disturbance, with low values indicating stressed vegetation. Based 

on the correlations between NDVI and a meteorologically based drought index, Ji and Peters 

(2003) discovered that NDVI is an efficient indication of vegetation response to drought in the 

Great Plains of the United States. 

Limitations of NDVI; NDVI can be affected by cloud and cloud contamination, however, the 

maximum NDVI in a 10-day period (maximum NDVI composite) is used for a given pixel to 

minimize the impact of clouds (Senay et al., 2014). NDVI uses only two bands and is not very 

sensitive to influences of soil background reflectance at low vegetation cover (Thenkabail, 

Gamage and Smakhtin, 2004).  

In conclusion, it should be noted that various indices for different drought types are available as 

discussed and that different indices have strengths and weaknesses and not a single index is 

superior to the rest in all circumstances but some indices may be better suited than others for certain 

applications (Agwata, 2014).  

The standardized precipitation index (SPI) will be considered as the superior index because it has 

several characteristics that are an upgrading over other indices, it is simple to calculate, has been 

widely used and it is recommended by many studies (Morid, Smakhtin and Moghaddasi, 2006). 

Additionally this index is less data intense therefore efficient for developing countries like Uganda 

where the access to data is limited (Mekonen, Berlie and Ferede, 2020) as it gives best result 

without other climatic parameters like minimum and maximum temperature, humidity, potential 

evapotranspiration and sun hours as it uses only precipitation data and gives accurate result (Shah, 
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Bharadiya and Manekar, 2015) and is able to characterize drought at different aggregate period, 

describing the dry and wet periods (Bayissa et al., 2019). Sometimes it may be necessary to 

combine indices in a study to be able to comprehensively deal with the drought hazard. The indices 

should, however, not be based on identical data. The choice of an index depends on the purpose 

of a study and for drought risk assessment for instance, SPI is the most preferred index since it 

takes into account the component of precipitation deficit at different time scales and is generally 

used together with NDVI which is completely based on the vegetation and use of satellite data.  

The Normalized Difference Vegetation Index (NDVI) is one of the most successful indices for 

simple and quick identification of vegetated areas and their condition (Agone and Bhamare, 

2008).The NDVI from LANDSAT 8 LOI data has been extensively used for vegetation 

monitoring, crop yield assessment, and drought detection (Bera et al., 2018). Thus, these methods 

are better for agricultural (vegetation stress) and Meteorological (precipitation) drought 

applications and henceforth for this study. 

2.6.4 Vegetation Health Index 

The Vegetation Health Index (VHI) combines VCI and TCI. The VHI is based on vegetative data 

collected for a long term sequence basically extracted from remote sensing data thus it can be 

noticed that the ratio of LST/NDVI increases during times of drought. The vegetation health index 

averages the sum of Vegetation Condition Index and Temperature Condition Index. The VHI has 

also been frequently used for agricultural purposes, such as crop yield estimation [Kogan et 

al.,2012, Salazar et al.,2008, Bokusheva et al.,2016]. The principle of using VHI for drought 

monitoring is that an assessment of temperature conditions helps identify subtle changes in 

vegetation health because the effect of drought is more drastic if shortage of moisture is 

accompanied by excessive temperatures. The feasibility of using VHI has been validated in all 

major agricultural countries. The VHI is computed using the formula below;                         

VHI= αVCI + (1-α) TCI                                                                                                                                            

where α=0.5   (Sholihah et al., 2016) 
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The VHI range developed by (Kogan, 2002) are shown in the table below; 

Table 2: Category of VHI based on range values (source: (Kogan, 2002)) 

Drought classes VHI 

Extreme drought <10 

Severe drought 10-20 

Moderate drought 20-30 

Mild  drought 30-40 

No drought >40 

 

2.7 Land Surface Temperature (LST) 

Land surface temperature is derived from the thermal infrared bands of satellite images. It serves 

as a proxy for assessing evapotranspiration, vegetation water stress and soil moisture (Karnieli et 

al., 2010). LST is a good indicator of the energy balance at the earth’s surface which can provide 

important information about the surface physical properties and climate (Goetz, 1997; Sruthi and 

Aslam, 2015).  It is reported that the negative correlation between LST and NDVI was largely due 

to changes in vegetation cover and soil moisture and indicted that the surface temperature can rise 

rapidly with water stress. 

2.7 LST estimation 

2.7.1 The Qin et al.’s mono-window algorithm 

The mono window algorithm estimates LST through decomposition of Planck’s radiance function 

using a Taylor’s expansion and calculation of two empirical coefficients a and b (Qin et al., 2001). 

Three a priori known parameters are required for the algorithm: transmissivity (τ)/water vapour 

content, effective mean atmospheric temperature (Ta) and emissivity (ε). All the temperatures are 

in Kelvin. LST (Ts) is calculated from the equation below; 

 

Where a = −67.355351 and b = 0.458606 are constants, T sensor is the at-sensor brightness 

temperature, 𝑇𝑎 can be calculated from the total water vapor content and the near surface local air 
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temperature depending on the atmospheric conditions, C and D are calculated using the equations 

below respectively; 

 C = ετ  

 

The main disadvantage of this method is that it is dependent on water vapor and other atmospheric 

conditions and requires in-situ measurements.     

2.7.2 Single channel algorithm                                                           

The recent Single channel modification is highly sensitive to water vapor changes (Cristóbal et al., 

2009). Therefore, it means that in absence of the in situ measurements of water vapor content this 

method cannot be used to estimate LST. Since LST estimation methods require clear sky, only 

cloud-free images are used for processing. In this method LST is obtained from the following 

equation; 

 

 Where: ε is surface emissivity, γ and δ are parameters directly depending on Planck’s function. 

Also ψ1, ψ2 and ψ3 are the atmospheric correction functions. Similar to the MW, the optimal 

performance of the SC algorithm is observed for the atmospheres with water vapor content in the 

range of 0.5–2.5 g∙cm−2 (Qin et al., 2001). 

2.7.3 Radiative transfer equation  

This equation is used to estimate the land surface temperature from the thermal infrared region of 

the spectrum. It depends on the wavelength but also on the observation angle, although for Landsat, 

the nadir view provides good results. The atmospheric parameters are calculated from in situ radio 

soundings and using a radiative transfer codes like MODTRAN (Jimenez-Munoz et al., 2009). 
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where L sensor is the at-sensor radiance or Top of Atmospheric (TOA) radiance (the radiance 

measured by the sensor), 𝜀 is the land surface emissivity, Bλ is the blackbody radiance given by 

the Planck’s law and Ts is the LST, Latm↓ is the down welling atmospheric radiance, 𝜏 is the total 

atmospheric transmissivity between the surface and the sensor and Latm↑ is the upwelling 

atmospheric radiance. Therefore, from Equation above it is possible to find LST by inversion of 

the Planck’s law. The main disadvantage of this method is that it needs in situ Radio sounding 

launched simultaneously while the satellite passes. 

2.8 The methods used in previous studies 

Many studies have been done on drought forecasting adopting different indices and prediction 

models especially with the advent of remote sensing technology. These variations have occurred 

mainly due to a difference in the accuracies and efficiency of various indices and prediction 

models. Satellite remote sensors can quantify what fraction of the photo synthetically active 

radiation is absorbed by vegetation (Ghobadi et al., 2015). A region’s absorption and reflection of 

photo synthetically active radiation over a given period of time can be used to characterize the 

health of the vegetation there, relative to the norm with the calculation of NDVI for the region. 

(Sruthi and Aslam, 2015) Combined EROS Moderate Resolution Imaging Spectroradiometer 

(eMODIS) NDVI data and MOD11A2 LST data extracted from MODIS for drought assessment. 

NDVI and quality data were used to calculate the NDVI metrics. eMODIS NDVI data values range 

from -1999 to 10000, 2000 being the fill value. After applying the scale factor, the NDVI data 

values were found to lie within 0 to 1. Time-series NDVI variation profile of the study area was 

derived from the calculation of NDVI using the eMODIS NDVI data for the specified period of 

time and also used to generate the maximum, minimum and average NDVI values of every month. 

Land Surface Temperature was calculated from the MOD11A2 data but extracted in Kelvin. The 

digital number (DN) values were converted to degrees Celsius using the formula below;                                                                                                                                           

Temperature = (DN * 0.02) - 273.15 ºc                                                                                                           
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The monthly average temperature of the study area was calculated and the values correlated with 

the monthly NDVI values in order to understand the changes in vegetation growth with respect to 

the rainfall and temperature, thereby indicating the intensity of agricultural drought.  

(Karthika, et al., 2017) Used the first step of the ARIMA model to get the Vegetation Temperature 

Condition Index (VTCI) image of the first ten days of April in 2006 for the Guanzhong Plain in 

China. Step 2 of the ARIMA model was then used to forecast the VTCI image of the middle ten 

days of April for the same year. By comparing the original data with the predicted ones, the two 

images were found to be similar hence the conclusion that the model was accurate and suitable for 

drought prediction in China.  

(Dutta et al., 2015) Combined a Vegetation Condition Index (VCI) and Standardized Precipitation 

Index (SPI) for drought assessment in the North Western part of India. The Vegetation Condition 

Index was computed using the formula stated earlier in this report. The VCI were classified 

according to drought severity classes developed by (Singh et al., 2003). The Standardized 

Precipitation Index (SPI) was computed using the formula below; 

 SPI = (xα-1.ex/β) / (βα ).Г (α)                                                                                                                              

Where α>0, is a shape parameter, β>0 is a scale parameter, x is the precipitation amount and Г 

(α) is the gamma function.                                                                                                                                                                          

A Crop Yield Anomaly was then computed for identifying deviation of yield for a particular 

from its long term period basically giving the statistics of major rain fed crops like maize, 

sorghum and Pearl millet. Yield anomalies of these crops were calculated using the formula 

below; 

 YAI = (Y-µ) / ð  

Where, YAI = Yield Anomaly Index                                                                                                                                             

Y= Crop Yield                                                                                                                                                                                   

µ = Long term average yield                                                                                                                                                

ð = Standard Deviation.         

It was discovered that unlike the meteorological data available from sparsely distributed 

meteorological stations, remote sensing based index VCI can be successfully used for delineating 

the spatio-temporal extent of agricultural drought (Dutta et al., 2015).  
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(Sun and Kafatos, 2007) Used the period between 1996-2000 because improved information on 

clear sky radiances and cloud cover was available. Clear sky conditions were selected to calculate 

skin temperature (LST) for cases where the cloud cover fraction (CCF) was less than 10%. To test 

for the quantitative relations from daily maximum, minimum and mean LST, the following 

equation was used;  

 

Where a and b are the regression coefficients. Correlation analysis’ were performed with monthly 

mean values of spatial points from the five-year average of North America. The correlations 

between NDVI and surface air temperature were generally positive in winter period, negative in 

summer and insignificant in autumn.  

(Van Rooy,1965) Developed the “Rainfall Anomaly Index” (RAI) based on ratios of rainfall 

departure from normal to departure of threshold value from normal. It is dependent on long term 

meteorological rainfall observations. RAI shows the relation between a regional humidity index 

and the actual evaluation of dry periods during the rainy season. The demerit of this index is that 

it uses the observations from only rainfall.( Alley,1984)Stated that the “Palmer Drought Severity 

Index” (PDSI) was developed for Meteorological drought assessment using precipitation, 

evapotranspiration and soil moisture conditions as the key inputs. The PDSI is efficient in 

addressing two of the most significant properties of drought and they are the intensity of drought 

and its onset and offset time. However, PDSI is very complicated to compute and requires a long 

term observations of multiple parameters which makes it usable at only limited regions. It has 

some other limitations too due to which, the conventional time series models may not be able to 

capture the stochastic properties of PDSI.  

(Tsakiris and Vangelis, 2005) Used the “Reconnaissance Drought Index (RDI)” for assessment of 

drought severity. Here, the Potential Evapotranspiration (PET) is calculated using Thronthwaithe 

formula. Rainfall and temperature data are obtained for monthly time steps. Since PET is used, a 

realistic determination of water deficit is obtained. 

(Karthika, et al., 2017) Used the ARIMA model to predict rainfall data in the semi-arid region of 

India and made a comparison between the observed data and predicted data with the purpose of 
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validating the model. It was discovered that the predicted data arguably agreed with the actual data 

(Karthika, et al., 2017). According to research, combining vegetation indices with an appropriate 

prediction model gives a good basis for making drought prediction or future rainfall patterns. 

2.9 Digital image processing 

The main goal of digital image processing is to improve the quality of tones and hues, image 

textures, fracture patterns, lineaments, and their trends in order to increase the amount of 

geological information extracted(Lineament et al., 2012).Digital image processing is categorized 

into:                                                                                                                                                                                                              

(i) pre-processing techniques for example geometric and radiometric corrections of the satellite 

raw data, mosaicking and sub setting techniques for the targeted area                                                                   

(ii) Image enhancement techniques are methods for creating new updated images with more detail 

in order to make visual representations of specific features easier. Digital image processing is 

ended by the information extraction procedures including image classification 

techniques(Lineament et al., 2012). 

2.9.1 Image pre-processing 

 Pre-processing functions involves the operations required prior to the main data analysis and 

consists of processes aimed at geometric correction, radiometric correction and atmospheric 

corrections present in the raw image data to improve the ability to interpret the image components 

qualitatively and quantitatively. This process corrects the data for sensor irregularities and removes 

(radiometric corrections) unwanted sensor distortion or atmospheric noise (Asokan et al., 2020). 

Sensor, solar, atmospheric, and topography influences can cause distortion in images obtained by 

Landsat sensors. Preprocessing attempts to minimize these effects to the extent desired for a 

particular application (Young et al., 2017). 

2.9.2 Radiometric and Geometric correction 

Satellite images are normally subjected to radiometric and Geometric correction in order to correct 

for some of the errors in the image. 

2.9.2.1 Geometric correction 

It entails correcting geometric distortions caused by sensor-Earth geometry variations as well as 

converting data to real-world coordinates (Geo- Referencing). Geometric errors are present in 

image data captured by satellite sensors. The relative movements of the platform, its scanners, and 
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the earth trigger an image geometry error. Geometric errors of varying degrees can be caused by 

non-idealities in the sensors, the curvature of the earth, and uncontrolled changes in the location 

and altitude of the remote sensing platform (Asokan et al., 2020). 

2.9.2.2 Radiometric correction 

A sensor detects reflected electro-magnetic energy; however, due to the sun's azimuth and 

atmospheric conditions, the detected energy differs from the energy emitted by the same source. 

As a result, these radiometric distortions must be corrected in order to achieve the true irradiance 

or reflectance. Radiometric correction plays a critical role in producing an error-free thematic map 

for biomass applications. To correct radiometry for terrain topography and canopy variations due 

to reflectivity, Simard et al., (2016) suggested holomorphic and heteromorphic calibration 

technique. 
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CHAPTER THREE: METHODOLOGY 

 

Figure 2: Shows the methodology flow chart 
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3.1 Data collection 

The first phase of the methodology was data acquisition. Data was acquired from satellite sources 

and meteorological datasets were obtained from the Uganda National Meteorological Authority 

and the global weather database Soil and Water Assessment Tool. The satellite imagery for this 

study were obtained for Landsat 8 OLI with a spatial resolution of 30m for January 2015,2020 and 

Landsat 7 ETM for 2000,2005,2010 were downloaded from USGS (United States Geological 

Survey) with a 5 years’ interval. Landsat’s resolution has the implication that it is not flooded with 

microscopic detail but incorporates features that are sufficient for identification of built-up and 

non-built-up enabling classification (Taubenboeck et al., 2008). In January there is not any or very 

little rainfall (the rainy season usually stretches from March to May and later from August to 

November) when the ecosystem-based adaptations to drought are assumed to be at their peak. 

January falls in the dry season hence a higher chance of clear imagery without cloud cover being 

a problem. Therefore, all the images were acquired for the month of January. 

The study area is one of Uganda's less well-monitored areas in terms of the dense meteorological 

data collection networks. The existing meteorological datasets have a series of gaps and cannot be 

filled and used for drought assessment (Mfitumukiza et al., 2017). The gaps are attributed to 

vandalism and subsequent system breakdowns. Due to this shortcoming, this study downloaded 

and used some of the meteorological datasets from the global weather database Soil and Water 

Assessment Tool (http://globalweather.tamu.edu/). These datasets have been used to assess 

droughts in the East African region (Mfitumukiza et al., 2017). The defined period of data 

collection was from 01/01/2000 to 31/12/2020 from the Uganda National Meteorological 

Authority. 

3.2 Data processing 

3.2.1 Image pre-processing 

Already processed and cloud cover free Landsat 8 and 7 imagery of collection 2 level-1 were 

downloaded from USGS (United States Geological Survey) with a 5 years’ interval. The 

corrections were carried out on Landsat 7 ETM+ and Landsat 5 imagery to remove strip lines. 

These were corrected using QGIS software where rasters were imported and then spatially 

corrected for a number of times.  
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3.2.2 Clipping and masking to study area 

The study area which is Isingiro district was clipped out in ArcGIS software using the 

administrative boundary shape files of districts in Uganda that were obtained from the UBOS 

website for efficient processing. The same shape file was used as the mask for extracting images 

for classification. The extract by mask tool in ArcGIS software was used. This resulted into the 

shape files and imagery covering only the study area.  

3.3 Computation of Normalized Difference Vegetation Index (NDVI) 

Normalized Difference Vegetation Indices for the years 2000-2020 were calculated based on 

Landsat 8 and 7 satellite images in ArcGIS software. NDVI calculation was performed to extract 

vegetation index values which were used for computing Vegetation Condition Index. For this 

study, NDVI was calculated for each of the five years according to the following formula; While 

using Landsat 8 image NDVI was calculated using; 

 

3.4 Computation of Vegetation Condition Index (VCI) 

The Vegetation Condition Index was obtained from Normalized Difference Vegetation Index 

(NDVI) to monitor vegetation condition. The VCI data were derived using the following equation; 

VCI = 
𝐍𝐃𝐕𝐈𝐚–𝐍𝐃𝐕𝐈𝐌𝐈𝐍

𝐍𝐃𝐕𝐈𝐌𝐀𝐗– 𝐍𝐃𝐕𝐈𝐌𝐈𝐍
∗ 𝟏𝟎𝟎       

3.5 Computation of Land Surface Temperature 

The Digital Numbers (DN) were converted to physical measurements at sensor radiance (Lµ) using 

the formula below that accounts for the transformation function used to convert the analogue signal 

received at the sensor to DN stored in the resulting image pixels;                        

 Lµ = (gain * DN) + offset                                                                                                                    

Where Lµ is at sensor radiance, gain is the slope of the radiance/ DN conversion function, DN is 

the digital number of a given pixel and offset is the intercept of the radiance/ DN conversion 

function. Gain and offset values were supplied in the metadata accompanying the image. The band 
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was then converted from spectral radiance to a physically useful variable using the formula below;                                                                                                                                            

TB = K2 / (ln (K1 / Lµ + 1))                             

Where TB is the radiant surface temperature (K), K2 is the calibration constant 2 (1282.71), K1 is 

the calibration constant 1 (666.09), and Lµ is the spectral radiance of thermal band pixels (YUE, 

et al., 2017).  

Finally, the radiant surface temperature will be converted to Land Surface temperature (LST) using 

the formula;                                                                                                               

LST = TB / (1+µTB / ƍ) ln ε                                                                                                                               

Where µ is the wavelength of emitted radiance (for which the peak response and the average of 

the limiting wavelengths (µ=511.5) were used), ƍ = h * c/α (1.438*1022mK), α is Boltzmann’s 

constant (1.38*10-23J/K), h is Planck’s constant (6.626*10-34Js), and c is the velocity of light 

(2.998*108m/s). ε is emissivity. 

3.6 Computation of Temperature Condition Index (TCI) 

The Temperature Condition Index was calculated using the following equation; 

TCI = 
𝐋𝐒𝐓𝐦𝐚𝐱− 𝐋𝐒𝐓𝐚

𝐋𝐒𝐓𝐦𝐚𝐱−𝐋𝐒𝐓𝐦𝐢𝐧 
∗ 𝟏𝟎𝟎                                                                                                                 

Where, LSTa is the LST value of current month, LSTmin and LSTmax denotes the minimum and 

maximum LST values respectively calculated from multiyear time series data. 

3.7 Computation of Vegetation Health Index 

The VHI was computed using the Vegetation Condition Index (VCI) and the Temperature 

Condition Index (TCI) values. The vegetation health index was computed using the formula;      

VHI = αVCI + (1-α) TCI Where α=0.5 (Shiddiq, et al., 2016                                                                                                                                               

The periodic VHI values were plotted in Microsoft Excel to obtain a graphical trend of the past 

years. The VHI values were then classified basing on the drought severity classes developed by 

(Kogan, 2002) (Table 2.2) 

3.8 Computation of Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index values were calculated according to the methodology 

explained by (Giddings et al.,2005). The SPI computations were achieved through the use of DrinC 
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software. Other studies according to (Mlenga et al.,2019 and Mondol et al., 2017) considered 

Drought Index Calculator (DrinC) software. Therefore, computing SPI was done by using the 

Drought Index Calculator (DrinC) which was developed by the Laboratory of Reclamation Works 

& Water Resources Management, National Technical University of Athens. The software was 

downloaded from http:// www.ewra.net/drinc.  The selection of the software was based on its 

simplicity such that it can be easily adopted for use. DrinC is a user-friendly tool software package 

that was developed for providing a simple and an adaptable interface for the calculation of several 

drought indices (Tigkas, Vangelis & Tsakiris 2015). The software operates on Windows platform 

and is programmed in Visual Basic. A series of 30 years (1990-2020) period of data was be used 

to determine SPI values for 3-, 6- and 12-month timescales.  The SPI was computed for on a 

monthly scale so that the consistency of drought condition and duration was determined according 

to SPI categories (table 1) that is to say, this allows establishing classification values for SPI. A 

series of 30 years (1990-2020) period of data was used to determine SPI values and the selected 

timescales for the computation of SPI were 3, 6 and 12-month time scales. The 3-month SPI 

indicates the conditions of short-term drought, mostly soil moisture and drought stress with an 

impact on agriculture, while the 6- and 12-month SPIs indicate medium to long-term droughts 

which affect ground water supplies and pasture conditions (Mlenga et al., 2019). 

Isingiro district precipitation(rainfall) dataset for a period of thirty years (1990-2020) was obtained 

from Uganda National Meteorological Authority. The Microsoft Excel data set was uploaded onto 

the DrinC software for manipulation.  
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Figure 3: Interface of DrinC software 

 

The SPI was calculated at 3-, 6- and 12-month timescales. The primary reference base in DrinC 

software is the hydrological year (October–September). However, the study defined the 

hydrological year based on the rainfall calendar of Isingiro district.  The MS excel worksheet 

format output was produced and used for further processing in ArcGIS.    

3.9 Generation of maps from SPI and VHI data 

Mapping is an essential part of the illustration of spatial drought as a visual and effective tool to 

compare and depict how drought is distributed in a region (Edwards, 2015). The SPI values were 

interpolated using Inverse Distance Weighted(IDW) method in ArcGIS software and the maps 

were generated for the years 2000, 2005, 2010, 2015 and 2020 for the 6-month SPI time scale. The 

interpolated maps were reclassified based on the SPI values as categorized in Table1. Using the 

VHI values calculated, VHI maps were generated for the years 2000, 2005, 2010, 2015 and 2020. 
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CHAPTER FOUR: RESULTS AND DISCUSSIONS  

4.1 Introduction 

This chapter presents, analyzes and discusses results obtained from analysis of Standardized 

Precipitation Index(SPI) and Vegetation Health Index in order to achieve the overall and specific 

objectives of this study. The results from assessment of objective one are presented first followed 

by those for objective two. 

4.2 Results and Discussion 

4.2.1 Drought Severity and frequency 

The utilization of Standardized Precipitation Index in quantifying various drought types is widely 

known. Because SPI may be estimated across a variety of time scales, it is frequently used as a 

drought indicator. The selected timescales for the computation of SPI were a 3,6 and 12-month for 

over 30years. SPI during selected years of 2000, 2005, 2010, 2015 and 2020 have been presented 

to show the pattern of SPI during these years. 

4.2.1.1 Standardized Precipitation Index (SPI) graphs 

The plot shows both wet and dry years during the entire study period. Summaries of these graphs 

are shown below; 

 

Figure 4:SPI results at 3-month time scale 

From the figure above, Drought conditions result in a negative score while wet conditions result 

in a positive index. It is observed that rainfall variability is high shown by annual fluctuations 

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

1990 1995 2000 2005 2010 2015 2020

SPI-3 month 

SP
IV

al
u

e
s

Time in Years



41 
 

above and below the established zero causing wet and dry conditions. The index grows more 

negative or positive when the dry or rainy circumstances become more severe. Mfitumukiza et al. 

(2017) found that such weather extremes and climate events occur frequently in Uganda. 

According to the SPI statistics, the extreme drought years were 1990,1991, 1994, 1995,1998, 

2000,2001, 2007, 2009,2015,2016 and 2017 for the assessed period, while the wettest years 

recorded included 2002, 2005, 2010, 2018, 2020. 

 

Figure 5:SPI results at 6-month time scale 

The plot shows wet and dry (drought) years. The figure shows 1992,1993,1995,2004,2008, 2013, 

and 2019 as wet years and 1993,2013 and 2019 as the wettest years. On the other hand, the plot 

shows that the area experienced moderately and severe droughts between, (1990-1991) and later 

between 1999-2000 and 2014-2017. The plot also reports short-term normal droughts in 1998, 

2005 -2007 and 2009. 
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Figure 6: SPI results at 12-month time scale 

The results above show that 2002-2006 and 2010-2014 were wet years. The plot also depicts 

droughts from 1999-2001 and from 2015-2018 with extreme droughts. 

4.2.1.2 Discussion 

For the period 1990-2020, the analysis demonstrates the temporal behavior of dry and wet 

conditions on a 3, 6, and 12-month time scales for Isingiro district for a period of 30 years. As 

indicated in table 1, the SPI values are separated into groups ranging from extreme wet to extreme 

drought. SPI-12-time scale had larger frequencies of change between the dry and wet periods but 

in SPI-6 and SPI-3 time scales it was medium. On a short timescale (SPI-3 and SPI-6 time scales) 

the fluctuation of the intensities was between less than -1 and less than 1 and the drought conditions 

were ranging from moderate to severe droughts. Droughts are constant in the periods 1998 to 2001 

and 2015 to 2018 as indicated by the SPI-12-month scale. The highest SPI value for the 12-month 

scale (SPI-12) is -1.48 in 2017 and -1.46 for 2000. These high values were because of severe 

droughts experienced in that period. Two long-term droughts from 1998 to 2001 and 2015 to 2018 

were recorded. This implies a considerable impact on reservoir levels and groundwater levels. 

 

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

1990 1995 2000 2005 2010 2015 2020

SPI -12 month
SP

IV
al

u
es

Time in Years



43 
 

4.2.2 Standardized Precipitation Index (SPI) drought maps 

The SPI data values for the years 2000,2005,2010, 2015 and 2020 were analyzed to show the 

spatial pattern during these years. The calculated SPI values were interpolated using Inverse 

Distance Weighted method to identify drought prone areas in Isingiro district. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: SPI maps of Isingiro district for the years 2000 and 2005 
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Figure 8: SPI maps of Isingiro district for the years 2010,2015 and 2020 
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4.2.2.1 Discussion 

The results indicate lower SPI values for the years 2000 and 2015 in the northern part and central 

part of Isingiro district. Isingiro district did not experience drought in the years 2005 and 2010 as 

seen from the maps, the SPI values were in the range of 1.0 to 1.5. In 2015 the SPI values dropped 

from 0.03 to -0.15 which indicates a severely dry situation and this was because of low 

precipitation received. In 2020 the SPI values were high between 0.43 and 1.85 in the western and 

central area of Isingiro district which indicate moderate and mild drought due to increased amount 

of rainfall received in 2019 and 2020. This variation helped in identifying the trend and the years 

in which the area was more prone to drought conditions due to precipitation.  
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4.2.3 Vegetation Health Index (VHI) drought maps 

The VHI data values for the years 2000,2005,2010, 2015 and 2020 were analyzed to show the 

spatial pattern during these years.  

 

 
 

Figure 9: VHI maps of Isingiro district for the years 2000 and 2005 
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Figure 10: VHI maps of Isingiro district for the years 2010, 2015 and 2020 
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4.2.3.1 Discussion 

The drought maps were classified into five classes namely; No drought, Mild drought, Moderate 

drought, severe drought and extreme drought. The maps show the areas that were affected by in 

the years 2000, 2005, 2010, 2015 and 2020. These maps clearly give a scenario of drought 

prevalence and its trend in the area. In 2000, 2010 and 2015 drought was higher in extent than in 

2005 and 2020.Therefore more focus has to be given to these areas when drought management 

plans are prepared. The tables below show the area and percentage for each class for the two 

different indices used to monitor drought.  

Table 3: Area and Percentage area of drought for the years 2000, 2005, 2010, 2015 and 2020 

for SPI 

Table 4: Area and Percentage area of drought for the years 2000, 2005, 2010, 2015 and 2020 

for VHI 

VHI 2000 2005 2010   2015 2020 

Class 

Name 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Extreme 

drought 587.41 20 90.32 3 752.70 25 843.03 28 30.11 1 

Severe 

drought 270.97 9 632.27 21 1023.68 34 602.16 20 873.13 29 

Moderate 

drought 358.59 12 812.92 27 632.27 21 963.46 32 752.70 25 

Mild 

drought 503.41 17 993.57 33 270.97 9 331.19 11 632.27 21 

No 

drought 1289.23 43 541.95 18 331.19 11 270.97 9 722.59 24 

Total 3010.81 100 3010.81 100 3010.81 100 3010.81 100 3010.81 100 

 

SPI 2000 2005 2010   2015 2020 

Class 

Name 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Area in 

Sq.km Area(%) 

Extreme 

drought 933.35 31 301.08 10 541.95 18 662.38 22 331.19 11 

Severe 

drought 1083.89 36 541.95 18 903.24 30 782.81 26 481.73 16 

Moderate 

drought 572.05 19 451.62 15 632.27 21 903.24 30 692.49 23 

Mild 

drought 301.08 10 602.16 20 331.19 11 541.95 18 843.03 28 

No 

drought 120.43 4 1114.00 37 602.16 20 120.43 4 662.38 22 

Total 3010.81 100 3010.81 100 3010.81 100 3010.81 100 3010.81 100 

           



49 
 

                     

Figure 11: Statistics from change detection for SPI 

                    

Figure 12: Statistics from change detection for VHI 

The graphs above show by what percentage drought was changing in Isingiro district from 2000 

to 2020 at a five-year interval according to the different classes of drought created. From the graphs 

2000 and 2015 were the driest years and for 2005 and 2020 the drought was mild. 
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4.2.4 Analysis of the relationship between SPI and VHI 

SPI-3 and VHI-2010 have the lowest correlation of 0.105 at the 3-month time scale and the highest 

correlation is in 2000(0.541) and 2015(0.659). VHI shows more areas affected by drought 

compared to SPI. The comparative analysis of the two indices indicated that VHI and SPI are 

highly correlated in the years 2000 and 2015. Drought analysis based on these indices showed that 

for drought assessment VHI can be used to depict drought condition of the study area more 

realistically. The results of this comparison show that 12-month scale of SPI and VHI have a higher 

correlation. Overall SPI-12 had the highest correlations with VHI data. VHI-2015 and SPI-12 had 

the highest correlation coefficient of 0.659. Hence, the 6-month timescale is better when using SPI 

to monitor drought.                                                                                                                        

Table 5: Correlation coefficients between VHI and SPI 

INDICES SPI-3 SPI-6 SPI-12 

VHI-2000 0.386 0.457 0.551 

VHI-2005 0.443 0.397 0.473 

VHI-2010 0.105 0.313 0.255 

VHI-2015 0.393 0.403 0.659 

VHI-2020 0.337 0.319 0.478 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

CHAPER FIVE: CONCLUSION AND RECOMMENDATION  

5.1 Introduction      

This chapter presents the conclusion and recommendations, which are based on the findings of the 

study. 

5.2 Conclusion  

The VHI and SPI indices were used to identify the temporal and spatial drought patterns as derived 

from the study of a 20-year time period. The analysis revealed that 2000 and 2015 were the driest 

years. Using SPI, the southeastern and northwestern parts of the Isingiro district are the areas that 

are susceptible to drought and while using VHI, it was the northwestern, southwestern and 

southwestern parts of Isingiro are the areas that are susceptible to drought. SPI works well when 

there is an even distribution of weather stations in the area. 

SPI-3 and VHI-2010 had the lowest correlation of 0.105 at the 3-month time scale and the highest 

correlation was in 2000(0.541) and 2015(0.659). VHI showed more areas affected by drought 

compared to SPI. The comparative analysis of the two indices indicated that VHI and SPI are 

highly correlated in the years 2000 and 2015. Drought analysis based on these indices showed that 

for drought assessment VHI can be used to depict drought condition of the study area more 

realistically. The results of this comparison show that 12-month scale of SPI and VHI have a higher 

correlation.                   

5.3 Recommendations                                                                                                              

Based on the findings of this research, it’s recommended that Standardized Precipitation Index 

should only be used where sufficient data collected on precipitation is available and has enough 

instrumentation and where you don’t have sufficient precipitation data and enough instrumentation 

it’s better to use Vegetation Health Index.  
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