Development of a protection and control scheme for the interconnection of two rural isolated PV mini grids in Uganda
Abstract
Extension of the main grid to remote areas is economically not feasible. To electrify remote areas, one of the best choices is to install Renewable Energy Sources (RES) as a distributed generation (DG) and thus form a mini-grid (MG) in islanded (Stand‐alone) mode. In islanded mode, the MG has no support from the national grid. Thus, the overloading of islanded DC MG can collapse DC bus voltage and cause fluctuation in the load. Therefore, the power sharing and the interconnection among the mini-grid (MG) cluster are necessary for reliable operation. Many methods for power sharing also aim at minimizing circulating currents which cannot be avoided when every MG feeds their load locally. Therefore, the proper power balancing among generation, loads, and in between MG cluster is challenging in islanded topology. This project presents an intelligent controller for power sharing among PVbased MG clusters with load management of connected load during power deficiency. The priority is given to the local critical load of each MG. The second priority is given to the remaining load of the respective MG. The least priority is given to the loads connected to the neighboring MGs. The results show that the power continuation to the power‐deficient load has been maintained when another MG has surplus power. Key words: Mini grids, Power sharing, Distributed generation, Interconnection.