• Login
    View Item 
    •   Mak UD Home
    • College of Computing and Information Sciences (CoCIS)
    • School of Computing and Informatics Technology (CIT)
    • School of Computing and Informatics Technology Collection
    • View Item
    •   Mak UD Home
    • College of Computing and Information Sciences (CoCIS)
    • School of Computing and Informatics Technology (CIT)
    • School of Computing and Informatics Technology Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Agri-Predict mobile application

    Thumbnail
    View/Open
    undergraduate dissertation (1.191Mb)
    Date
    2022-04-27
    Author
    Asiimwe, Orla Nerys
    Babirye, Petrina Tusubira
    Kivumbi, George Owen
    Kyebagonza, Jonathan
    Metadata
    Show full item record
    Abstract
    Fluctuation of maize prices in Uganda is a common problem. Maize farmers are often emotionally and financially strained when they invest a lot into farming and after harvesting, the maize prices drop significantly. This strain could be eased if there was a means for farmers as well as other stakeholders to have an idea or approximation of what the prices could be during the next harvest season. This research project conducted between March 2021 and December 2021 introduces Agri-predict mobile application, a solution to this problem. Agri-predict is a react native mobile application, that uses machine-learning forecasting techniques by combing sklearn library sktime with regression to forecast the possible maize prices for the upcoming season ahead of time. This gives stakeholders an idea of how to plan for the next season, for example, maize farmers can know whether to sow more or less grain and in addition, it brings emotional comfort by removing price uncertainty. The machine-learning model considers its independent variables as maize quantity in terms of production and precipitation levels. It also considers maize prices of the harvest season as the dependent variable.It should, however, be noted that maize prices in Uganda are affected by many more factors but only the above mentioned were taken into consideration for this study. This report highlights similar studies in agriculture price forecasting conducted in other parts of the world under the Literature Review. It also provides a systematic description of methods that were applied during the study in terms of the techniques employed in data collection, analysis, design, implementation, testing, and validation. The report vividly describes how the machine-learning model was built, trained and tested to ensure accuracy.Finally, it presents a discussion on the results of all the above activities.
    URI
    http://hdl.handle.net/20.500.12281/12976
    Collections
    • School of Computing and Informatics Technology Collection

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak UDCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV